w3heattransferthermalstressia.docx

上传人:b****5 文档编号:3988143 上传时间:2022-11-26 格式:DOCX 页数:10 大小:96.71KB
下载 相关 举报
w3heattransferthermalstressia.docx_第1页
第1页 / 共10页
w3heattransferthermalstressia.docx_第2页
第2页 / 共10页
w3heattransferthermalstressia.docx_第3页
第3页 / 共10页
w3heattransferthermalstressia.docx_第4页
第4页 / 共10页
w3heattransferthermalstressia.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

w3heattransferthermalstressia.docx

《w3heattransferthermalstressia.docx》由会员分享,可在线阅读,更多相关《w3heattransferthermalstressia.docx(10页珍藏版)》请在冰豆网上搜索。

w3heattransferthermalstressia.docx

w3heattransferthermalstressia

Note:

ThisworkshopprovidesinstructionsintermsoftheABAQUSGUIinterface.IfyouwishtousetheABAQUSKeywordsinterfaceinstead,pleaseseethe“Keywords”versionoftheseinstructions.

PleasecompleteeithertheKeywordsorInteractiveversionofthisworkshop.

Goals

Whenyoucompletethisworkshop,youwillbeableto:

∙Understandtheinputandoutputforasteady-stateandatransientheattransferanalysis.

∙Useanamplitudespecificationforloading.

∙Understandtheprocedurereadingtemperaturesintoastressanalysisfromanoutputdatabase(.odb)file.

∙Understandhowusersubroutinesareused(optional).

Problemdescription

Thephysicalproblemisasquaretubewithacircularhole.Thetubeissurroundedbyafluid,andtheholeisfilledwithanotherfluid.Thetwo-dimensionalfiniteelementmodelwillcontainonlyaone-eighthsectorofthetube.ThetubegeometryisshowninFigureW3–1.Thethermalpropertiesofthetubearegivenbelow:

∙Thermalpropertiesofthetube:

Specificheat=485.7N·m/kg·°C

Density=7833.0kg/m3

Conductivity=11.19W/m·°C

FigureW3–1Squaretubewithcircularhole.

Preliminaries

1.Entertheworkingdirectoryforthisworkshop:

../heat_transfer/interactive/workshop3

2.Runthescriptws_ht_thermalStress.pyusingthefollowingcommand:

abaquscaestartup=ws_ht_thermalStress.py

TheabovecommandcreatesanABAQUS/CAEdatabasenamedthermalStress.caeinthecurrentdirectory.Themodelcontainsallthedatanecessarytorunasteady-stateheattransferanalysisofthetube.Youwillbeginthisworkshopbyrunningthissteady-stateheattransferanalysis.Later,youwillmodifythemodeltoperformadditionalthermalandstructuralanalysesofthetube.

Steady-stateheattransferanalysis

AppliedTemperatures

Wewillstartwithasteady-stateheattransferanalysisinwhichthefluidtemperaturesareapplieddirectlytothenodesoftheinnerandouterwallsofthetube.Thisapproachimpliesthatthefluidstouchingthewallsareinfiniteheatsinks.

3.Submitthejobnamedsteady_bctorunthemodelsteadyHeatTransfer.

4.Afterthejobcompletes,opensteady_bc.odbintheVisualizationmodule.Theundeformedmodelshapeisplottedbydefault.

5.UsetheResultsTreetodeterminethelocationsofthedifferentnodeandelementsets.

a.IntheResultsTree,expandtheElementSetsandNodeSetscontainersunderneaththeoutputdatabasenamedsteady_bc.odb.

b.Selectdifferentsets;thecorrespondingsetswillbehighlightedintheviewport.

c.Onceyouarefamiliarwiththelocationsofthedifferentsets,collapsethecontainers.

Onlyone-eighthofthecross-sectionneedstobemodeledbecauseofsymmetry.

QuestionW3–1:

Whatshouldtheboundaryconditionsbeatthosesymmetrylines?

Whataretheappliedboundaryconditionsinthemodel?

Thinkaboutthedifferencebetweenenforcingsymmetryforathermalboundaryascomparedtothatforadisplacementboundary.

6.Createacontourplotofthetemperature(variableNT11).Theprocedureisprovidedbelow.Checkthecontourlinesatthesymmetrylines.Thecontourlinesshouldbenormaltotheedgeifthesymmetryconditionsarecorrectlyenforced.

d.Fromthemainmenubar,selectResultFieldOutput.

e.IntheFieldOutputdialogbox,selectNT11(nodaltemperature)astheprimaryvariable.ClickOK.

f.IntheSelectPlotStatedialogbox,chooseContourandclickOK.

Filmcoefficients(forsurfaceconvection)

Theinterfacebetweenthetubeandthefluidscanbemodeledmorerealisticallybydefiningfilmcoefficientsandsinktemperatures.

1.CopythemodelsteadyHeatTransfertoamodelnamedsteadyHeatTransfer-film.

a.IntheModelTree,clickmousebutton3onsteadyHeatTransferandselectCopyModelinthemenuthatappears.

b.EntersteadyHeatTransfer-filmasthenameofthenewmodel.

2.Inthenewmodel,removethetwoexistingboundaryconditionswhichsetthetemperatureoftheinnerandouterwalls.(Clickmousebutton3onthemintheModelTreeandchooseeitherDeleteorSuppress.)

3.Defineasurfacefilmconditionnamedholeonthesurfaceholewithafilmcoefficientof1500W/m2·°Candasinktemperatureof400°C.

Note:

DetailsofthesurfacefilmconditiondefinitionprocedurearegiveninWorkshop2.

4.Defineasurfacefilmconditionnamedouteronthesurfaceouterwithafilmcoefficientof30 W/m2·°Candasinktemperatureof500°C.

5.Createajobnamedsteady_filmforthemodelsteadyHeatTransfer-film.

6.Submitthejobforanalysis.Checkthejobmonitorforanymodelingerrorsandmakeanynecessarycorrections.

7.Afterthejobcompletes,opensteady_film.odbintheVisualizationmodule.

8.Createacontourplotoftemperature.Tocomparetheseresultstotheresultsintheappliedtemperaturemodel,youcandisplaybothcontourplotsatthesametimeasfollows:

a.Fromthemainmenubar,selectViewportCreate.

Thenewviewportappears.

b.Fromthemainmenubar,selectViewportTileVerticallytoarrangetheviewportssothatbothareclearlyvisible.

c.Inoneviewportopentheoutputdatabasefortheappliedtemperaturemodel,andintheotherviewportopentheoutputdatabaseforthesurfaceconvectionmodel.Createcontourplotsofthetemperature,andcomparethem.

QuestionW3–2:

Howdoestheplotforthemodelusingfilmconditionscomparetotheplotfortheappliedtemperaturemodel?

(Thinkabouthowthefilmconditionattributescouldbechangedsothattheresultswouldbethesameasfortheappliedtemperaturemodel.Thisprocessisanoptionalexerciseifyouhavetimeattheendoftheworkshop.)Howdotheresultsreflecttherelativemagnitudesofthefilmcoefficients?

9.Returntotheoriginalsingleviewport.

g.Toremoveoneoftheviewports,clickthedeletebuttoninthetoprightcorneroftheviewport.

h.Tomaximizetheremainingviewport,clickthemaximizebuttontotheleftofthedeletebutton.

Transientheattransferanalysis

Wewillnowmodelthecaseinwhichtheinnerandouterfluidsstartatthesametemperatureandthetemperatureoftheinnerfluidisrampeddownto400°Cover10secondsandisthenheldconstantatthattemperature(seeFigureW3–2below).Thischangecanbespecifiedbyusinganamplitudecurve.

FigureW3–2Sinktemperaturevariationforsurfaceconvection.

CopythemodelsteadyHeatTransfer-filmtoamodelnamedtransientHeatTransfer.

Makethefollowingchangestotheheattransferstep(ModelTree:

Steps:

double-clickStep-1):

i.Modifythestepdescriptionto"Transientheattransfer."

j.SetthestepresponsetypetoTransient.ABAQUS/CAEwillautomaticallychangethedefaultloadvariationto"Instantaneous."

k.Changethesteptimeperiodto10000.

l.Setthemaximumnumberofincrementsto200.

m.Specifyaninitialincrementsizeof2.5.

n.Endthestepwhenthetemperaturechangerateislessthan0.001.

o.Setthemaximumallowabletemperaturechangeperincrementto10.

Thus,thisstepspecifiesatransientanalysisthatendswhensteadystateisreached(definedbythetemperaturechangerate).ABAQUSwilluseautomatictimeincrementationtokeepthemaximumtemperaturechangeatanynodeinanincrementunder10°C.

Createatabularamplitudecurvenamedtemp1withthedataprovidedinTableW3–1,sothattheamplitudemagnitudebeginsat500,rampsdownto400bytime10,andthenremainsconstant.

p.IntheModelTree,double-clickAmplitudes.

q.Nametheamplitudetemp1andacceptTabularastheamplitudetype.

r.EntertheamplitudedataprovidedinTableW3–1.

TableW3–1Amplitudedata.

Time

Amplitude

0.0

500.

10.0

400.

1000.0

400.

Editthefilmconditionhole,sothattemp1isthesinktemperatureamplitude(ModelTree:

Interactions:

double-clickhole).Changethemagnitudeofthesinktemperatureto1.0(thisvaluewillbescaledbytheamplitudecurve).

Createatemperaturefieldintheinitialsteptoassignaninitialtemperatureof500tothesetplate.

7.CreateajobnamedtransientHeatforthemodeltransientHeatTransfer.Theresultsfromthisanalysiswillbeusedtodrivethesubsequentstressanalysis;doubleprecisionoutputisdesirableinthiscase.Thus,setthenodaloutputprecisiontoFull.

8.Submitthejobforanalysisandmonitoritsprogress.

QuestionW3–3:

Whatdoyounoticeabouttheincrementsize?

Arethesizesofthelastincrementsreasonable?

9.OpentransientHeat.odbintheVisualizationmoduleandplottemperaturecontours.Comparethetemperaturesatvarioustimestothetemperaturesinthesteady-stateanalysis.

10.CreateX-Yplotsofthetemperaturevariationovertimeforafewdifferentnodes.Tryplottingtemperaturesforafewpointsalongthediagonalonthesameplot.

TherearetwowaystoobtaintheX-Ydataneededtocreatethesetemperatureplots.Onemethodistorequestthedataashistoryoutput,andreruntheanalysis.HistorydatamaybeusedtocreateX-Yplotsdirectly(ResultHistoryOutputintheVisualizationmodule).ThesecondmethodistoextracttheX-Ydatafromthefieldoutput.Thedetailsofthistechniquefollow:

s.IntheResultsTree,double-clickXYData.

t.IntheCreateXYDatadialogbox,selectODBfieldoutputasthedatasource.

u.IntheVariablestabbedpageoftheXYDatafromODBFieldOutputdialogbox,chooseUniqueNodalasthevariableposition.ToggleonNT11:

Nodaltemperature.

v.ClicktheElements/Nodestabandselectthenodesetforwhichyouwouldliketoextractnodaltemperatures.

w.ClickPlot.

Thermal-stressanalysis

Thesamegeometrycanbeusedforastressanalysis.Wewilldefineaprobleminwhichtheinitialloadingisauniformpressurizationappliedtotheinnerwallofthetube.

11.CopythemodeltransientHeatTransfertoamodelnamedstress.

12.Addthe

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学教育 > 数学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1