自然建筑与可持续水利工程外文文献翻译.docx

上传人:b****6 文档编号:3876576 上传时间:2022-11-26 格式:DOCX 页数:15 大小:35.13KB
下载 相关 举报
自然建筑与可持续水利工程外文文献翻译.docx_第1页
第1页 / 共15页
自然建筑与可持续水利工程外文文献翻译.docx_第2页
第2页 / 共15页
自然建筑与可持续水利工程外文文献翻译.docx_第3页
第3页 / 共15页
自然建筑与可持续水利工程外文文献翻译.docx_第4页
第4页 / 共15页
自然建筑与可持续水利工程外文文献翻译.docx_第5页
第5页 / 共15页
点击查看更多>>
下载资源
资源描述

自然建筑与可持续水利工程外文文献翻译.docx

《自然建筑与可持续水利工程外文文献翻译.docx》由会员分享,可在线阅读,更多相关《自然建筑与可持续水利工程外文文献翻译.docx(15页珍藏版)》请在冰豆网上搜索。

自然建筑与可持续水利工程外文文献翻译.docx

自然建筑与可持续水利工程外文文献翻译

文献信息:

文献标题:

Sustainablehydraulicengineeringthroughbuildingwithnature(与自然共建,形成可持续水利工程)

文献作者及出处:

DeVriendHJ,vanKoningsveldM,AarninkhofSGJ,etal.Sustainablehydraulicengineeringthroughbuildingwithnature[J].JournalofHydro-environmentresearch,2015,9

(2):

159-171.

字数统计:

英文4059单词,22465字符;中文7180汉字

外文文献:

 

Sustainablehydraulicengineeringthroughbuildingwithnature

AbstractHydraulicengineeringinfrastructuresareofconcerntomanypeopleandarelikelytointerferewiththeenvironment.Moreover,theyaresupposedtokeeponfunctioningformanyyears.Intimesofrapidsocietalandenvironmentalchangethisimpliesthatsustainabilityandadaptabilityareimportantattributes.ThesearecentraltoBuildingwithNature(BwN),aninnovativeapproachtohydraulicengineeringinfrastructuredevelopmentandoperation.Startingfromthenaturalsystemandmakinguseofnature'secosystemservices,BwNattemptstomeetsociety'sneedsforinfrastructuralfunctionality,andtocreateroomfornaturedevelopmentatthesametime.Byincludingnaturalcomponentsininfrastructuredesigns,flexibility,adaptabilitytochangingenvironmentalconditionsandextrafunctionalitiesandecosystemservicescanbeachieved,oftenatlowercostsonalife-cyclebasisthan‘traditional’engineeringsolutions.Thepapershowsbyanumberofexamplesthatthisrequiresadifferentwayofthinking,actingandinteracting.

Keywords:

Buildingwithnature;Sustainability;Infrastructure;Hydraulicengineering;Ecosystemservices;Design

1.Introduction

Present-daytrendsinsociety(urbanizationofdeltaareas,growingglobaltradeandenergydemand,stakeholderemancipation,etc.)andintheenvironment(reducingbiodiversity,climatechange,acceleratedrelativesealevelrise,etc.)puteverhigherdemandsonengineeringinfrastructures.Mono-functionalsolutionsdesignedwithoutdueconsiderationofthesurroundingsystemarenolongeraccepted.Sustainability,multi-functionalityandstakeholderinvolvementarerequiredinstead.Thistrendequallyappliestohydraulicengineeringworksandtheassociatedwatersystemmanagement.Thedesignofhydraulicengineeringprojectsisnolongertheexclusivedomainofhydraulicengineers.Collaborationwithotherdisciplines,suchasecology,economy,socialsciencesandadministrativesciencesiscrucialtocometoacceptablesolutions.Thespecialistsinvolvedinsuchdesignprojectsmustlearnhowtoputforwardtheirexpertiseinmuchmorecomplexdecisionmakingprocessesthanbefore:

beingrightaccordingtothelawsofphysicsnolongerguaranteesbeingheardinsuchprocesses.Ifthisrealityisignored,itmayleadtolongandcostlydelaysofprojects,asstakeholdersandotherinterestedpartiesarebecomingevermoreproficientinusingthelegalopportunitiestoopposedevelopmentsandhavedecisionspostponed.IntheNetherlandsthecourt-casesthatdelayedtherealisationoftheextensionoftheRotterdamharbourtaughtanexpensivelesson,keepingtheinvestmentsintheinitiation,planninganddesignphasesoftheprojectwithoutanyreturnforalongtime.

Thisandotherexperiencestriggeredtheawarenessthatprojectsshouldbedevelopeddifferently,withnatureandstakeholderinterestsincorporatedrightfromthestart.Inotherwords:

fromareactiveapproach,minimizingandmitigatingtheimpactsofasetdesign,toapro-activeone,optimizingonallfunctionsandecosystemservices.AlthoughinprincipletheconceptofBuildingwithNature(BwN)isbroaderthanhydraulicengineering,wewillfocushereonwater-relatedprojects.Thispaper,whichisanextensionofDeVriend(2013),discussestheprojectdevelopmentstepsastheyhavebeensuggestedbytheBwNinnovationprogrammeandillustratestheirusebydescribinganumberofhydraulicengineeringprojectsinwhichtheconcepthasbeentestedandsomeotherexampleswheresuccessfulapplicationistobeexpected.

2.Thebuildingwithnature(BwN)concept

2.1.Generalprinciples

BuildingwithNature(BwN)isaboutmeetingsociety'sinfrastructuraldemandsbystartingfromthefunctioningofthenaturalandsocietalsystemsinwhichthisinfrastructureistoberealized.Theaimisnotonlytocomplywiththesesystems,butalsotomakeoptimumuseofthemandatthesametimecreatenewopportunitiesforthem.Thisapproachisinlinewiththeneedtofinddifferentwaysofoperationanditrequiresadifferentwayofthinking,actingandinteracting(DeVriendandVanKoningsveld,2012;DeVriendetal.,2014).

2.1.1.Thinking

Thinkingdoesnotstartfromacertaindesignconceptfocussingontheprimaryfunction,butratherfromthenaturalsystem,itsdynamics,functionsandservices,andfromthevestedinterestsofstakeholders.Withinthiscontext,oneseeksoptimalsolutionsforthedesiredinfrastructuralfunctionality.

2.1.2.Acting

Theprojectdevelopmentprocessrequiresdifferentacting,becauseitismorecollaborativeandextendsbeyondthedeliveryoftheengineeringobject.Thenaturalcomponentsembeddedintheprojectwilltaketimetodevelopafterwards,andonehastomakesuretheyfunctionasexpected.Postdeliverymonitoringandprojectionsintothefutureareanintegralpartoftheproject.Thisalsocreatesopportunitiestolearnalotmorefromtheseprojectsthanfromtraditionalones(seealsoGareletal.,2014).

2.1.3.Interacting

BwNprojectdevelopmentisamatterofco-creationbetweenexpertsfromdifferentdisciplines,problemownersandstakeholders(e.g.,Temmermanetal.,2013).Thisrequiresadifferentattitudeofallpartiesinvolvedanddifferentwaysofinteraction,ininterdisciplinarycollaborativesettingsratherthaneachactortakingawayhistaskandexecutingitinrelativeisolation.

2.2.Designsteps

Projectdevelopment,albeititeratively,generallygoesthroughanumberofconsecutivephases.TheBwNinnovationprogrammedistinguished‘initiation’,‘planninganddesign’,‘construction’and‘operationandmaintenance’.BwNsolutionsmaybeintroducedineachprojectphaseintheformofecologicallypreferableandmoresustainableapproaches.Althoughthereisroomforimprovementinanyphase,theearliertheapproachisembracedintheprojectdevelopmentprocess,thegreaterisitspotentialimpact.

Animportantstartingpointforanydevelopmentshouldbetheenvironmentathand.AkeycharacteristicthatdistinguishesaBwNdesignfromotherintegratedapproachesistheproactiveutilizationand/orprovisionofecosystemservicesaspartoftheengineeringsolution.Thefollowingdesignstepsweredeveloped,testedandsupportedbyscientificknowledgeintheBwNinnovationprogramme(DeVriendandVanKoningsveld,2012;EcoShape,2012):

●Step1:

Understandthesystem(includingecosystemservices,valuesandinterests).

—Thesystemtobeconsidereddependsontheprojectobjectives.Theprojectobjectivesareinfluencedbythesystem(problems,opportunities);

—Informationaboutthesystemathandcan/shouldbederivedfromvarioussources(historic,academic,localetc.);

—Lookforuserfunctionsandeco-systemservicesbeyondthoserelevantfortheprimaryobjective.

●Step2:

Identifyrealisticalternativesthatuseand/orprovideecosystemservices.

—Takeaninvertedperspectiveandturntraditionalreactiveperspectivesintoproactiveonesutilizingand/orprovidingecosystemservices;

—Involveacademicexperts,fieldpractitioners,communitymembers,businessowners,decisionmakersandotherstakeholdersintheformulationofalternatives.

●Step3:

Evaluatethequalitiesofeachalternativeandpreselectanintegralsolution.

—Morevaluedoesnotnecessarilyimplyhigherconstructioncost;

—Daretoembraceinnovativeideas,testthemandshowhowtheyworkoutinpracticalexamples;

—Performacost-benefitanalysisincludingvaluationofnaturalbenefits;

—Involvestakeholdersinthevaluationandselectionprocess.

●Step4:

Fine-tunetheselectedsolution(practicalrestrictionsandthegovernancecontext).

—Considertheconditions/restrictionsprovidedbytheproject(negotiable/non-negotiable);

—Implementationofsolutionsrequiresinvolvementofanetworkofactorsandstakeholders.

●Step5:

Preparethesolutionforimplementationinthenextprojectphase.

—Makeessentialelementsofthesolutionexplicittofacilitateuptakeinthenextphase(appropriatelevelofdetailvariesperphase);

—Prepareanappropriaterequestforproposals,termsofreferenceorcontract(permitting);

—Organiserequiredfunding(multi-source);

—Prepareriskanalysisandcontingencyplans.

Fundamentaltotheabovedesignstepsisathoroughknowledgeofhowthenaturalsystemfunctionsandacorrectinterpretationofthesignalstobereadfromitsbehaviour.Thelattermayindicateinwhatdirectionthesystemisevolving,howbesttointegratethedesiredinfrastructureintoitandhowtomakeuseoftheecosystemservicesavailable.Theymayalsoprovideanearlywarningofadversedevelopments,orindicateanincreasedsensitivitytonaturalhazards.Investinginincreasedunderstandingofthenaturalsystemanditsinherentvariabilitydoesnotonlypayofftotherealisationoftheprojectathand,butalsotothesystem'soverallmanagement.

2.3.Spectrumofapplicability

WhatkindofBwNsolutionmaybeappliedinagivensituation,beitcoastalorriverine,sandyormuddyordominatedbylivingcomponents,isgovernedbytheambientphysicalsystem.Practicalexperiencehasshownthatfourparametersspanuparangeofpotentialapplications:

bedslope,hydrodynamicenergy,salinityandgeoclimaticregion(e.g.,temperateortropical).

2.3.1.Flatslopes

Inlow-slopeenvironmentsgenericBwNsolutionscanbecompletelysediment-based.Thisistrueforbothsalineandfresh

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 语文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1