聚烯烃粘土纳米复合材料研究进展.docx

上传人:b****2 文档编号:387148 上传时间:2022-10-09 格式:DOCX 页数:24 大小:149.04KB
下载 相关 举报
聚烯烃粘土纳米复合材料研究进展.docx_第1页
第1页 / 共24页
聚烯烃粘土纳米复合材料研究进展.docx_第2页
第2页 / 共24页
聚烯烃粘土纳米复合材料研究进展.docx_第3页
第3页 / 共24页
聚烯烃粘土纳米复合材料研究进展.docx_第4页
第4页 / 共24页
聚烯烃粘土纳米复合材料研究进展.docx_第5页
第5页 / 共24页
点击查看更多>>
下载资源
资源描述

聚烯烃粘土纳米复合材料研究进展.docx

《聚烯烃粘土纳米复合材料研究进展.docx》由会员分享,可在线阅读,更多相关《聚烯烃粘土纳米复合材料研究进展.docx(24页珍藏版)》请在冰豆网上搜索。

聚烯烃粘土纳米复合材料研究进展.docx

聚烯烃粘土纳米复合材料研究进展

毕业论文

聚烯烃粘土纳米复合材料研究进展

摘要

在近几年,无机/有机纳米复合材料吸引了许多研究者的兴趣,因为他们常常能表现出令人意向不到的从两种化合物衍生而来的高效的协同性质。

这些很有前景的复合材料体系中的一个即是一种混合物,这种混合物是以有机聚合物和无机由层状结构组成的粘土矿物,它属于2:

1型层状硅酸盐的一种。

现在对聚合物/粘土纳米复合材料的研究成为热点。

被驱散的相的尺度和微观结构极大的影响着聚合复合材料的性质,聚合物/粘土纳米复合材料至少有一个极好的尺度,尤其是在1-10nm之间,因为聚合物/粘土纳米复合材料的纳米结构,它有独特的性质,如文献所报道的,聚合物/粘土纳米复合材料改进了机械和热力学性质、抗气体渗透性和阻燃性。

本综述介绍了聚烯烃/粘土纳米复合材料相关的基本概念、形成理论、结构特性及其表征方法,简要介绍了制备聚烯烃/粘土纳米复合材料催化剂的选择;对聚烯烃/粘土纳米复合材料的物理力学及化学各项性能做了深刻的探讨;并对近年来聚丙烯、聚乙烯、聚苯乙烯/粘土纳米复合材料的研究进展进行了综述;最后对聚烯烃/粘土纳米复合材料的发展趋势作以简要预测。

关键词:

聚烯烃;粘土;纳米复合材料

Abstract

Inrecentyears,organic-inorganicnanometercompositeshaveattractedgreatinterestfromresearcherssincetheyfrequentlyexhibitunexpectedhybridpropertiessynergisticallyderivedfromtwocomponents.Oneofthemostpromisingcompositessystemswouldbehybridsbasedonorganicpolymersandinorganicclaymineralsconsistingoflayeredstructure,whichbelongtothegeneralfamilyof2:

1layeredsilicates.Thereisagreatinterestinpolymer-claynanocomposites.Thedimensionandmicrostructureofthedispersedphasesignificantlyinfluencethepropertiesofpolymercomposites.Polymer-claynanocompositeshaveatleastoneultra-finedimensiontypicallyontheorderof1to10nm.Becauseofthenanoscalestructure,polymer-claynanocompositespossessuniqueproperties.Asreportedintheliteratures,polymer-claynanocompositeshaveimprovedmechanicalandthermalproperties,gaspermeabilityresistanceandfireretardancy.ThisreviewintroducedthePolyalkene-claynanocomositesrelatedandbasicconcept,theformationtheories,thestructurecharacteristicanditstokenmethods,thesynopsisintroducestomakethechoiceofhavethecatalystofPolyalkene-claynanocomosites;DidthedeepstudytoPolyalkene-claynanocomositesphysicsmechanicsandvariousfunctionsofchemistry;Combinetoinrecentyearspolypropylene,ethylene,styrene-claynanocomositesofresearchprogresscarriedontheoverview;MaketothePolyalkene-claynanocomositesdevelopmenttrendfinallytopredictwiththesynopsis.

Keywords:

alkene;clay;nanocomosites

引言

聚烯烃是一类综合性能优良、应用十分广泛的通用树脂。

由于其具有众多的优良特性,使得其发展十分迅速,按体积计,聚烯烃树脂已经超过了钢铁,成为人们不可缺少的一类材料。

但其性能方面还存在许多不足和缺点:

抗撕裂强度小、硬度小、耐摩擦耐热性能差、抗化学及抗环境药品性能差等。

为了进一步提高材料的的性能,对其进行改性,具有深远的意义。

另一方面,粘土作为我国范围内来源丰富、价格低廉等优点也成为科学界研究的目标之一。

这里所谓的粘土,是指含水的层状硅酸盐的总称。

目前研究较多的是TOT型层状硅酸盐,本文将以蒙脱石为例介绍其结构。

蒙托石晶层结构是由两层的硅氧四面体中间夹着一层铝氧八面体其间由氧原子连接并通过很强的范德华力作用相结合。

构成晶层的硅氧四面体和铝氧八面体之间存在着广泛的类质同相替代,如文中所介绍的Si4+被Al3+同晶置换,Al3+被Mg2+同晶置换,这样使得晶层表面存在过剩的负电荷,可通过吸附水合阳离子来补偿。

正是由于这样的特性,研究者们利用粘土的纳米特性完成对聚合物的增强。

然而,粘土晶层间存在的很强的范德华作用力,通常凝聚与一体,不能体现其纳米特性。

只有将聚合物插入层间,增加其层间距,使粘土晶层均匀的分布于聚合物集体中从而得到纳米符合材料。

可是粘土晶层表面呈亲水性,不能直接与熔融的聚合物插层,因此必须对粘土进行有机改性。

粘土改性的过程就是有机阳离子通过离子交换进入层间,从而使亲水的蒙脱石表面疏水化,降低矿物的表面能,使有机蒙脱石可以和大多数的有机物相容的过程。

本人将对涉及的聚烯烃/粘土纳米复合材料的相关概念、形成原理、各项性质、制备方法等进行详细的综述,并在文章最后对聚烯烃/粘土纳米复合材料的发展趋势给予简要预测。

第一章概述

1.1聚烯烃概述

聚烯烃是一类综合性能优良、应用十分广泛的通用树脂。

由于其加工简单、生产能耗低、原料来源丰富等特点,发展十分迅速,在合成树脂和塑料中所占的比例逐年增加。

按体积计,聚烯烃树脂已超过钢铁,成为人类不可缺少的一类材料。

但其性能方面也存在不足与缺点:

比如与工程塑料相比抗撕裂强度小、硬度小;耐摩擦、耐热、耐燃性能差;抗化学、抗环境药品性能差等[1]。

为了进一步提高材料的性能,对其进行改性,不仅具有很高学术价值,而且为传统产品的提档更新带来划时代的意义[2]。

因此,解决现有聚烯烃材料存在的各项问题,研究和开发性能更好、技术更先进、成本更低、且不会造成环境污染的聚烯烃新技术是21世纪石油化工的重要目标。

当今学术界中,通用塑料的工程化研究已成为高分子材料研究的方向之一,在这一领域中采用的首选方法就是聚烯烃塑料的填充改性。

在聚烯烃中加入填充剂可以提高材料的机械性能,改善其加工性能,同时也能降低成本[3]。

1.2纳米复合材料概述

纳米复合材料这一概念是1984年由Roy首次提出来的。

它是指复合物的分散相至少有一相的一维尺寸达到纳米级(1~100nm)的材料。

近年来,纳米复合材料的发展迅速,被称为“21世纪最有前途的材料之一”,受到了科技界的普遍关注,从而形成了纳米复合材料研究的热潮。

纳米复合材料的研究在金属和陶瓷领域开展的比较广泛和深入,而聚合物纳米复合材料的研究起步较晚,但近年来发展迅速,引起高分子科学领域的广泛关注[4]。

1.3聚合物纳米复合材料概述

聚合物纳米复合材料是以聚合物为基体(连续相)、无机粒子以纳米尺度(小于100nm)分散于基体中的新型高分子复合材料。

与传统复合材料相比,由于纳米粒子带来的纳米效应和纳米粒子与基体间的界面相互作用,聚合物纳米复合材料具有优于相同组分常规聚合物复合材料的力学、热学性能,为制备高性能、多功能的新一代复合材料提供了可能[6]。

依据复合材料各成分(层状硅酸盐、有机阳离子及聚合物基体)本身的特点及复合材料的制备方法,可制得3种类型的复合材料:

当聚合物不能插入到层状硅酸盐片层之间,就得到相分散的复合材料,即传统的“微观复合材料”,当聚合物链插入到层状硅酸盐片层之间形成一种聚合物/层状硅酸盐交替有序的多层形态,即得到“插层型纳米复合材料”,而当层状硅酸盐片层完全均匀分散在连续的聚合物基体中,就得到“剥离型纳米复合材料”。

X射线衍射(XRD)和透射电子显微镜(TEM)两种技术可以辨别插层型和剥离型两种结构的纳米复合材料,剥离型纳米复合材料的特征是无XRD衍射峰,这或者是由于层状硅酸盐层间距太大,或者是层状硅酸盐片层完全无序,TEM可以观察复合材料的形态,尤其是观察层状硅酸盐片层完全无序的结构。

除了上述两种结构明确的纳米复合材料外,另一类中间结构是介于插层型和剥离型纳米复合材料之间,即同时存在插层结构和剥离结构,通常这种结构的复合材料的XRD衍射峰变宽,因此必需结合TEM来判定复合材料总体的结构。

制备纳米复合材料的方法可以采用包括“原位复合”等在内的各种方法。

近年来,用原位复合法等制备纳米复合材料已成为材料科学领域中一个比较新颖的课题。

其中插层原位复合法是一种典型的原位复合方法,它是指在聚合过程中,将聚合物单体插入到粘土片层中间形成二维有序的纳米复合材料的制备方法。

由于纳米级的粘土分散片层是在聚合物聚合过程中形成,因此也称其为“原位复合”。

由于纳米复合材料的分散相与基体之间的界相面面积大,能把分散相和基体的性能充分结合起来,与基体材料相比,性能大大提高。

由于纳米粒子的颗粒尺寸很小,比表面积很大,达100m2/g左右,具有表面效应、体积效应、量子尺寸效应、及宏观量子隧道效应,再加上聚合物具有密度低、强度高、耐腐蚀、易加工等诸多优良特性,使聚合物纳米复合材料呈现出很多不同于聚合物复合材料的特性。

纳米粒子不仅使聚合物的强度、刚性、韧性得到了明显的改善,而且由于其尺寸小、透光率好,可以增加塑料的密度,提高塑料的透光性、防水性、阻隔性、耐热性及抗老性等功能特性。

聚合物基纳米复合材料有以下特点:

⑴与传统共混物相比质量较轻;⑵具有优良的气密性,可重复加工利用;⑶具有较好的综合性能(包括力学性能,耐溶剂性及热稳定性等)[5]。

1.4聚烯烃/粘土纳米复合材料概述

在聚烯烃纳米复合材料的研究中,以层状硅酸盐为分散相的研究最多,这是由于层状硅酸盐的插层化学已有深入的研究,同时层状硅酸盐又容易获得,用于制备聚烯烃/层状硅酸盐纳米复合材料的层状硅酸盐属于2:

1型层状硅酸盐结构家族,如蒙脱土(MMT)、水辉石、海泡石等。

MMT的晶体结构如图1.1所示。

它们的结晶晶格是由一个铝氧(镁氧)八面体夹在两个硅氧四面体之间靠共用氧原子而形成的层状结构,每个结构单元厚度为1nm左右,长、宽从30nm至几微米不等,层与层之间靠范德华力结合,并形成范德华沟(又称层间隙)。

由于2:

1型层状硅酸盐部分晶胞中铝氧八面体内的三价铝被二价镁同晶置换,晶片带有电负性,因此在片层表面吸附了阳离子,补偿过剩的负电荷以保持电中性。

层状硅酸盐中所吸附的阳离子主要有Na+、Mg2+、Ca2+等,并可进行离子交换,由于层间作用力

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1