功能材料设计.docx

上传人:b****6 文档编号:3840378 上传时间:2022-11-25 格式:DOCX 页数:9 大小:80.70KB
下载 相关 举报
功能材料设计.docx_第1页
第1页 / 共9页
功能材料设计.docx_第2页
第2页 / 共9页
功能材料设计.docx_第3页
第3页 / 共9页
功能材料设计.docx_第4页
第4页 / 共9页
功能材料设计.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

功能材料设计.docx

《功能材料设计.docx》由会员分享,可在线阅读,更多相关《功能材料设计.docx(9页珍藏版)》请在冰豆网上搜索。

功能材料设计.docx

功能材料设计

制作可用于体声波谐振器的钛酸锶钡(BST)压电薄膜

材料

一、前言

压电材料是受到压力作用时会在两端面间出现电压的晶体材料。

受到压力作用时会在两端面间出现电压的晶体材料。

1880年,法国物理学家P.居里和J.居里兄弟发现,把重物放在石英晶体上,晶体某些表面会产生电荷,电荷量与压力成比例。

这一现象被称为压电效应。

随即,居里兄弟又发现了逆压电效应,即在外电场作用下压电体会产生形变。

压电效应的机理是:

具有压电性的晶体对称性较低,当受到外力作用发生形变时,晶胞中正负离子的相对位移使正负电荷中心不再重合,导致晶体发生宏观极化,而晶体表面电荷面密度等于极化强度在表面法向上的投影,所以压电材料受压力作用形变时两端面会出现异号电荷。

反之,压电材料在电场中发生极化时,会因电荷中心的位移导致材料变形[1]。

利用压电材料的这些特性可实现机械振动(声波)和交流电的互相转换。

因而压电材料广泛用于传感器元件和滤波器中,例如地震传感器,力、速度和加速度的测量元件以及各种形式的滤波器等。

其中,薄膜体声波谐振器(FBAR)[2]作为一种工作频率高、温度系数小、功率容量大、损耗低、抗干扰好、体积小、成本低、可大批量生产的新兴射频滤波器,具有广阔的应用前景。

相较于传统的声表面波滤波器

(SAW),体声波的传播速度比表面声波快很多,故其在高频应用中(1GHz-20GHz)已经显示出了绝对优势。

而压电薄膜是FBAR技术研制的关键,为了制备一种高效率、谐振频率可调的薄膜体声波谐振器,可通过对以下几种适用于

FBAR滤波器的压电材料进行比较如表1,

表1适于FBAR的压电薄膜材料比较综合表中各项参数可看出,BST是比较适合做可调谐FBAR滤波器的压电材料。

故选用具有介电损耗小、Q值高、压电性能强等优点的钛酸锶钡材料(BST)制备,可使薄膜体声波谐振器(FBAR)技术快速发展。

钛酸锶钡薄膜(BST)有多种制备方法,主要有射频磁

控溅射法、脉冲激光沉积法(PLD)、金属有机物化学气

相沉积法(MOCVD)和溶胶-凝胶法等,在诸多制备方法中采用射频磁控溅射制备电介质薄膜是当前最为广泛的方法之一,射频溅射和磁控溅射的优点同时体现在射频磁控溅射当中。

该方法衬底温度较低、制备出薄膜的结晶性和铁电性好,但该方法在溅射过程中粒子的沉积速率较低,薄膜的成分和靶材有一定偏差,而且偏差的大小与工艺有关,因此对磁控溅射工艺参数的选择尤为重要。

本文通过优化工艺条件在Pt/Si衬底上制备出低损耗的BST薄膜,然后用XRD,AFM,SEM等表征方法分析薄膜的微结构与表面形貌,并研究其成膜时间、衬底温度、溅射功率、溅射气压等参数对薄膜的压电性能及介电性能的影响。

二、设计目的为制出高效率、谐振频率可调的薄膜体声波谐振器

(FBAR)选用钛酸锶钡(BST)压电薄膜材料。

三、设计原理

3.1原理:

薄膜体声波谐振器(FBAR)采用电极-压电薄膜-电极(MIM)结构,利用压电薄膜的逆压电效应(电致伸缩效应)将输入的高频电信号转化为一定频率的声信号。

根据驻波条件,当声波在压电薄膜中的传播距离正好等于半波长的奇数倍时就产生谐振,谐振频率处的声波损耗最小,使得该频率的声信号能通过压电薄膜层,而其他频率的信号被阻断,从而只在输出端输出具有特定频率的信号,这样就实现了电信号的滤波功能。

3.2结构:

品质因数Q是描述滤波器件压电薄膜材料的固有损耗以及声波在衬底中损耗的参数,因此在电极边界形

成声波的全反射能有效提高Q值。

为实现FBAR器件的声波

全反射,其结构主要有两种:

一、在底电极下形成空气-固体交界面作为声波反射面;如图1所示,采用空气-金属交界

面来限制声波传播,称为空腔声学隔离结构。

二、采用“声波镜”形成反射面来实现声波全反射射,称为反射层声学隔离结构。

如图1为空腔声学隔离结构的FBAR,它采用体微机械加工技术去掉部分衬底,形成边缘支撑悬空的膜结构,从而将声波限制于压电振荡层之内。

但衬底的大量移除会造成

器件的机械性能降低,而且腐蚀厚度难以控制。

电尿

衬底

图1空隙声学隔离结构

3.3体声波谐振器对压电材料性能的要求

331,FBAR器件的工作频率

FBAR器件的工作频率由压电薄膜的声速V和压电薄

膜d的厚度决定,其表达式为:

可见压电薄膜的声速越大,FBAR器件的工作频率越

高;压电薄膜的厚度越小,FBAR器件的工作频率也越高。

在材料选取方面,常采用高声速的的压电薄膜避免因为薄膜厚度越薄而越不易制备成高取向压电薄膜的技术问题。

3.3.2FBAR的尺寸

FBAR的尺寸(电极面积、压电层厚度)和介电常数仁r)

一起决定着FBAR的静态电容值,高的介电常数可以减小FBAR的尺寸,有利于提高系统的集成化。

3.3.3谐振频率的可调性铁电钙钛矿氧化物经常具有很高的压控可调性,在可调体声波谐振器应用方面具有很大的开发潜力。

这种材料在加一个偏压后压电效应增强,并且其谐振频率随外加偏压的变化有明显的变化。

综上,要制出高效率、谐振频率可调的薄膜体声波谐振器(FBAR),优选钛酸锶钡(BST)材料。

3.4钛酸钡锶(BST)的晶体结构及性能

钛酸锶钡(BST)压电材料是典型的立方钙钛矿结构[3],通式为ABO3,结构如图2。

在ABO3结构中,较大的Ba、Sr离子占据立方晶包的八个顶角的A位,周围有12个氧离子。

较小的Ti离子占据立方晶包体心的B位,周围有6个氧离子,这些氧离子形成氧八面体,Ti离子处于其中心。

整个晶体可被看成是由氧八面体共顶点连接而成,各氧八面

体之间的空隙则由A位离子的Ba/Sr占据

图2钙钛矿结构的晶格示意图

钛酸锶钡(BST)是铁电相钛酸钡(BaTiO3)和顺电相钛酸锶(SrTiO3)的无限固熔体。

故BST具有介电系数大,非

线性强、结构稳定、温度系数小,介电损耗低的优点。

当BST上有电压变化时,BST的铁电性使得它的介电常数以电滞回线的形式变化。

在外加偏压的作用下,电致伸缩效

应破坏了BST薄膜的中心对称结构,从而诱导出很强的压电性。

基于BST铁电簿膜的这种非线性性质,能够制备出的傅膜体声波谐振器具有良好的外加偏压依赖的谐振特性,频率可调性很强。

四、BST压电薄膜的制备

采用双腔室超高真空射频磁控溅射法制备。

衬底选择:

(1)导电性良好,并且在高温时和薄膜不发生相互反应;

(2)电极与薄膜应具有良好的晶格匹配度;(3)电极表面平整。

故在Pt/Ti/SiO2/Si基片上沉积BST薄膜,且得的样品介电损耗小。

靶材选择:

(1)结晶性好

(2)结构致密。

通过查阅文献知压电性随着钡含量增加而增强,但钡含量过高时,介电损耗大,不适合做FBAR的压电薄膜。

经综合分析,采用Ba/Sr=70/30的BST陶瓷靶材。

制备过程:

(画个流程图箭头)首先用丙酮、酒精和去离子水对基片进行超声清洗,然后把清洗后的基片放入进样室进行溅射清洗,送入溅射室,用机械泵和分子泵将本底真空抽至9.0X10-5Pa以下;再次,对基底加热,通入氧气与氩气进行预溅射、溅射;最后,对样品退火热处理。

射频磁控溅射法的优缺点:

该方法衬底温度较低、制备出薄膜的结晶性和铁电性好,但在溅射过程中,粒子的沉积速率较低,薄膜的成分和靶材有一定偏差。

4.1基片温度对薄膜的影响

在700C—800C之间,随着基片温度的升高,薄膜厚度减小,沉积速率下降,介电常数变大,可调略有上升。

但温度过高时,基片上的粒子活动剧烈,有利于薄膜结晶,晶粒更大,电极表面变粗糙,而且电极与薄膜之间发生互扩散,

使得薄膜漏电流增大,介电损耗变大。

所以,基片温度不能太高或太低。

4.2溅射功率对薄膜的影响

在100W—200W之间,随着溅射功率的增大,薄膜厚度增加,沉积速率明显提高,介电常数增大。

但是过高的溅射功率,使溅射沉积速率过快,会造成粒子不能充分扩散,使得薄膜内部产生很多缺陷,薄膜漏电流增大,对薄膜性能产生不利影响。

综合考虑,200W对于制备高性能的BST薄膜非常有利。

4.3溅射气氛中氧氩比对薄膜的影响随着溅射气氛中氧气百分含量增大,薄膜沉积速率略有降低。

但当氧含量过高时,薄膜的反溅射比较严重,破环薄膜的晶体结构,使薄膜容易击穿。

经查阅参考文献,溅射气氛O2:

Ar=20:

20时,对制备BST薄膜比较有利。

4.4溅射总气压对薄膜的影响随着溅射总气压的减小,薄膜厚度增加,沉积速率明显增大,介电常数变大。

但是过低的溅射气氛,使溅射沉积速率过快,造成粒子不能充分扩散,薄膜内部产生很多缺陷,使薄膜漏电流增大,对薄膜性能产生不利的影响。

此外,不同溅射总气压下制备的薄膜的介电可调都几乎相同,考虑介电损耗和介电可调,经查阅文献知溅射总气压为5Pa时对于制备高性能BST薄膜比较有利。

4.5退火对薄膜性能的影响

退火后薄膜的介电常数和介电可调有了大幅度的提高,介电损耗明显减小。

综上所述,在溅射制备薄膜过程中通过改进基片温度、溅射功率、溅射总气压、溅射气氛中的氧氩比和退火等工艺参数,可使薄膜的介电性能和压电性能有极大提高[]。

五、BST薄膜测试

采用X射线衍射(XRD)对薄膜相结构进行分析;采用原子力显微镜(AFM)分析薄膜表面形貌;用扫描电镜(SEM)分析薄膜侧面形貌并量薄膜厚度。

5.1X射线衍射分析

X射线衍射仪由X射线发生器、测角仪、辐射探测器、测量电路以及控制操作和运行软件的电子计算机系统组成[8]。

通过对材料进行X射线衍射,分析其衍射图谱,获得材料的成分、材料内部原子或分子的结构或形态等信息的研究手段。

如图5是预期得到的BST薄膜的XRD图,半高宽窄而峰尖锐,基片温度为750C时,有(100)峰和(200)峰,这和钙钛矿结构的BST特征峰吻合,可见750C结晶时,有利于提高BST薄膜的压电性能。

图5750C的基片温度下制备BST薄膜的XRD图

5.2原子力显微镜

原子力显微镜(AFM)主要由带探针的力敏元件、探针位移扫描探测器以及图像处理和显示系统组成。

系统通过一个安装在力敏微悬臂上的探针来采集信号。

当探针非常接近样品时,它们原子之间会产生极微弱的作用力(原子力)。

扫描时将这种作用力保持恒定,则探针尖将与样品表面保持等距离,带针尖的微悬臂将随样品表面的起伏在垂直于样品表面方向上产生偏移,通过光电检测系统对微悬臂的偏移进行扫描,测得微悬臂对应于扫描点的位移,最后将信号转换为样品表面原子级的三维立体形貌图像。

工作原理如图10所示[9]

微悬臂

图10AFM原理图

如图4是参考文献中,基片温度为750C时制膜后,退火对电极表面的影响。

晶粒较大,电极表面粗糙度为4.048nm,较粗糙,介电损耗小,薄膜的性能优。

750C

图4退火后电极表面的AFM图

5.3扫描电子显微镜

扫描电子显微镜(SEM)主要由电子光学系统、扫描系统、信号接收处理、显示记录系统等部分组成。

扫描电镜景深很大,对粗糙表面如断面的显示能获得非常清晰的图像,立体感很强,因而扫描电镜可用来观测粗糙表面形貌特征和薄膜的厚度。

5.4电性能测试

5.4.1介电性能测试

实验采用Agilent4294A测BST压电薄膜的介电性,实际上是应用了平行电容法,需要在材料的两面涂上电极,模拟一个电容,然后测试电容值,通过电容与介电常数之间的公式关系计算出介电常数。

本文将测试样品制备成具有金属电极-介质薄膜-金属电极(MIM)结构,基片用Si,上下电极均用Pt,薄膜样品准备好后,用Agilent4294A低频阻抗分析仪对其介电损耗和介电可调进行测量分析。

介电性能测量原理如图11所示。

图12薄膜介电性能测试原理图

5.4.2压电性测试压电系数d33是表征压电材料压电性强弱的物理量。

实验采用ZJ-3AN型准静态d33测量仪测量BST薄膜的压电系数。

测量原理如图12所示。

图13压电系数测量原理图基本测量原理为:

由仪器提供驱动信号,通过上下探头在被测试样上施加一个约为0.25牛、110MHz的低频应变

力,试样发生正压电效应。

仪器经过采集电容C和样品产生的电压V两组数据,根据式d33=CV/F对采集数据进行处理,最后把试样的压电系数d33的值和极性在数字面板上直接显示出来。

材料的压电性还可以通过压应力显微镜来观测。

压应力显微镜的主体是原子力显微镜。

在原子力显微镜的基础上外加一个偏压电源就构成压应力显微镜。

外加电源通过原子力显微镜的探针将一个偏压加在式样上,通过观测试样在外加偏压下表面形貌的变化来推导出材料的压电性。

六、预期结果

采用射频磁控溅射法法在Pt/Si(100)衬底上生长BST薄膜时,薄膜的介电性和压电性会受到衬底温度、溅

射功率、溅射气氛的总压强、溅射气氛中的氧氩比和溅射时

间等参数的影响。

通过数据比较,预期在衬底温度750C,

溅射功率200W,溅射气氛总压强为5Pa,溅射气氛中氧氩比为1:

1时,制备出的薄膜性能比较好。

随后将薄膜750C

的氧气中退火30min,希望得到可调率高于50%,介电损耗在1%左右的BST薄膜以制出高效率、谐振频率可调的FBAR。

七、参考文献

[1]何超,陈文革.压电材料的制备应用及其研究现状[J].功能

材料,2010,41:

11-19

[2]谭乐凡.可调谐体声波谐振器研究[D].成都:

电子科技与技术学院,2010.

[3]杨天应.BaxSr1-xTiQ3薄膜可调体声波谐振器的研究[D].成都:

电子科学与技术学院,2012.

[4]王德苗,金浩,董树荣.薄膜声体波谐振器(FBAR)的研究进展.电子元件与材料,2005,9:

65-68

[5]单连伟,马成国,吴泽.钛酸锶钡结构与制备工艺研究进

展[J].信息记录材料,2011,12

(1):

54-60

[6]郝正同,谢泉,杨子义.磁控溅射法中影响薄膜生长的因素及作用机理研究[J].贵州大学学报,2010,27

(1):

62-66.

[7]谢晓康,杨佳,缑园渊,磁控溅射参数对钛酸锶钡薄膜生长及介电性能的影响,自然科学报[J],2014,42(5):

37-42【8】林泽彬,蔡苇,刘行冰,射频磁控溅射制备钛酸锶钡薄膜的研究进展,电子元件与材料【J】,2012,31(5):

71-75

[9]祁景玉.X射线结构分析.上海:

同济大学出版社,2003,79-83

[10]张研研,陈祺.STM和AFM的原理及出现异常情况的处理方法.渤海大学学报(自然科学版)2008,29(3):

268-269

八、体会:

通过本次功能材料的课程设计,我学到了很多。

首先,知道了如何查阅文献,比如中国知网、谷歌学术、小木虫学术讨论网等等都可搜索所需的文章。

其次,对于压电材料有个更深层次的了解,要将材料特性用于实际应用中时,必须考虑各种影响因素,将材料优点与所制器件的功能密切结合。

再着,对于科研的认识度以及知识的严谨性提高了不少,每次将好不容易写好的文章拿给老师指导,仍有不少问题,对一些细节知识模糊不清甚至不曾思考,这与自身的懒惰与浮躁有关,然而,好在不论怎样疲惫,在老师的鼓励下,我依然坚持了下来,一遍一遍的查阅一遍一遍的修改,材料设计的报告终于较好的完工。

若以后要从事科研方面的工作,我就应该保持一种耐心、认真、专注的态度,急躁与马虎是大忌,但即使是其他工作,也需要这样的态度,对自己要求不能太低,尽可能的做到尽善尽美。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 语文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1