SMT DFM应用.docx

上传人:b****6 文档编号:3639922 上传时间:2022-11-24 格式:DOCX 页数:19 大小:47.95KB
下载 相关 举报
SMT DFM应用.docx_第1页
第1页 / 共19页
SMT DFM应用.docx_第2页
第2页 / 共19页
SMT DFM应用.docx_第3页
第3页 / 共19页
SMT DFM应用.docx_第4页
第4页 / 共19页
SMT DFM应用.docx_第5页
第5页 / 共19页
点击查看更多>>
下载资源
资源描述

SMT DFM应用.docx

《SMT DFM应用.docx》由会员分享,可在线阅读,更多相关《SMT DFM应用.docx(19页珍藏版)》请在冰豆网上搜索。

SMT DFM应用.docx

SMTDFM应用

SMTDFM应用

可制造性设计概念

不论是您公司从事的是什么产品,不论您的顾客是内部或是外部顾客,他们对您的要求都可说是一致的。

他们的要求都离开不了三方面。

即优良或至少满意的品质、相对较低的成本(或价格)、和较短而及时的交货期。

而身为一个产品的设计人员,您对以上的三个方面是绝对有影响和控制能力的。

目前新一代的设计师,他们的职责已不是单纯的把产品的功能和性能设计出来那么简单,而是必须对以上所提到的三方面负责,并做出贡献。

为什么现今的管理对设计师在这方面的表现特别重视呢?

主要是因为设计是整个产品寿命的第一站。

在效益学的观点上来说,问题越是能够越早解决,其成本效益也就越高,问题对公司造成的损失也就越低。

在电子生产管理上,曾有学者做出这样的预测,即在每一个主要工序上,其后工序的解决成本费用为前一道工序的10倍以上。

例如设计问题如果在试制时才给予更正,其所需费用将会较在设计时解决高出超过10倍,而如果这设计问题没法在试制时解决,当它流到再下一个主要工序的批量生产时,其解决费用就可能高达100倍以上。

此外,对于设计造成的问题,即使您厂内拥有最好的设备和工艺知识,也未必能够很完善的解决。

所以基于以上的原因,把设计工作做的好是门很重要的管理。

所谓把设计做的好,这里指的是包括产品功能、性能、可制造性和质量各方面。

SMT是门复杂的科技。

因此目前的设计师也面对许多方面知识的压力。

身为一个SMT产品设计师,他必须对很多方面如元件封装、散热处理、组装能力、工艺原材料、元件和组装寿命等等数十种科目具备一定的知识。

许多这方面的问题都是以往插件技术中不必加以考虑和照顾的,但如今却成了必备的知识。

所以当今的设计师,他们应该具备的知识面,已不能像以往处理电子产品设计时的范围一样。

而本讲座中谈到的DFM技术,也正是当今SMT设计师必备的知识之一。

目前在工业界里,几乎没有人不谈"品质"管理的。

先进管理观念强调,品质不是制造出来,而应该是设计出来的。

这观念有其重要的地方,是使用户从以往较被动的关注点(生产线上)移到较主动的关注点(设计上)。

但说法不够完善。

严格和具体来说,品质既不是生产来的,也不是单靠设计来的,而应该是配合来的。

好的品质是通过良好的设计(配合工艺和生产能力的设计),优良的工艺调制,和生产线上的工艺管制而获得的。

而这三者又是需要有良好的品质管理理念、知识、系统的制度来确保的。

要确保产品高而稳定的品质、高生产效率和低生产成本、以及准确的交货时间,我们的生产线必须要有一套所谓的"坚固工艺"(RobustProcess).而坚固工艺是必须通过设计、工艺能力、和设备性能之间的完好配合才能实现的。

所谓坚固工艺,是指其对外界各种影响它表现的因素的灵敏度很低。

也就是说,对这些因素的大变化,其整体效果还是稳定不变或只限于合格范围内的变动。

在我们计划引进一条生产线时,我们必须确保此生产线能处理我们所要制造的产品范围。

但当我们有了生产线后,我们则应该尽力使我们的产品设计,能适用于此生产线上制造。

这便是可制造性设计的基本理念。

"坚固的工艺"是相对的,所以一套设计规范也是有其针对性的。

它在某一生产环境下(设备、管理、材料、工艺能力、品质标准)也许是"坚固"的,但在另一个环境下却可能变得不"坚固"。

因此,设计的好与不好,也是有它的特定性。

用户必须了解和牢记这一点。

产品寿命,是另一设计上应该注重的地方。

由于产品在服务期内会受到各种不同的环境压力(如热变化、机械振动等等),产品的设计必须确保在这方面能经得起使用环境中会遇上的各种压力。

另一个要照顾到的是制造方面,可制造性和寿命有什么关系?

一个设计得非常难组装的产品,其对服务寿命的威胁一般也较大,而制造工艺上的小变化常常也会缩短其服务寿命。

比如一个热处理做得不好的设计,其制造过程中所受到的焊接热冲击会较大,因温差较大使焊点的可靠性也不容易得到保证。

这就影响了此产品的寿命。

产品设计的寿命考虑,始于对产品寿命的定义。

设计人员应该定下和寿命有关的一切条件,如寿命期(多少年)?

、允许的故障率、故障定义、维修保养政策、使用环境条件、验证方法等等。

再从使用环境条件的定义下,设计产品的

寿命测试方法、选择元件材料、选择设计规范,并通过寿命测试来验证设计和开发工艺等等。

影响寿命的因素很多,可分为主因素和次因素两大类。

主因素如元件引脚种类、元件的尺寸大小、元件和基本材料的匹配等等,这些对寿命的影响较明显严重。

次因素虽然单独的影响不是很明显严重,但几种次因素的作用加起来,其整体作用也可以是相当可观的。

这方面的例子如焊点的形状、成品的保护涂层(conformalcoating)、基板的外形比等等。

在影响产品寿命的种种因素之中,热处理的考虑应该算是SMT应用中最重要的一部分。

因为在SMT应用上,许多和寿命有关的问题都是和热处理有关。

它同时也是影响可制造性的重要因素,所以在热问题的考虑上,用户应该同时兼顾到制造工艺上和产品寿命上的问题。

另外一个对热处理因关注的原因,是绝大多数使用在电子产品上的材料,他们的性能都会随温度(即关系到热处理)而发生变化的,轻则性能不稳定,重则可能失效(暂时性)或甚至损坏(永久性)。

我们了解到设计规范对我们的产品寿命(即质量)、成本和交货期都有影响,那我们该采用什么设计规范或标准呢?

我们可以发现,公开市场上有不少类似IPC等机构推荐的设计标准。

他们之间都有差别,加上各大电子厂也都有自己本身的一套规范,标准可谓五花八门。

他们之中那一个较好呢?

为什么大电子厂不采如IPC这类世界有声望机构推荐呢?

而我们是否可以采用呢?

首先我们必须了解和认同的一点是,SMT工艺是门很复杂的科技学问,在SMT应用工作中,常出现一个问题现象是由无数因素联合形成的这一现象。

而有效的解决这些问题,有赖于我们对整体的配合能力。

这是所谓的技术配合。

由于因素众多,也随时间在改变,所以要找到两个完全一样的工厂的机会是很微小的。

既然设计规范在优化的情况下是必须配合工艺和设备能力等方面的,也就是说设计标准都有其适用范围,越是要优化其适用范围就越小。

所以如果要很好的使用设计来解决问题,一套适用于本身的规范标准是必须按本身特有的条件而开发的。

产品开发,应该将它当成是整个技术整合的一部分,而不是单独的产品开发工作。

把整个技术合成一起管理,才能真正做到最优化的程度,才有可能朝向"无缺陷"或"零缺陷"方向发展。

在产品开发的初期,设计小组应该将产品的品质和寿命要求定下,如果厂内开发多种产品,有需要时可以按他们之间的不同分成几个档次。

各档次都有相应的设计规范和工艺、材料规范来配合。

这些规范可以是以前开发验证过的经验,也可以是为了应付新需求而开发的新规范。

如果是新规范,设备方面也必须确保能够给予配合,有需要是或是引进新设备,或是提升改进现有的设备。

配合设计和工艺规范的设备再通过如TPM等的先进管理,来确保其稳定性和可靠性。

同时在不断标定的设备能力工作中使设计规范稳定和标准化。

在另一方面,材料的规范化也应该推出相应的供应商选择和管制系统。

通过对供应商能力的要求和评估来确保对工艺和材料方面的配合。

厂内的技术水平,由于直接决定厂内的工艺管制能力,也是个必须注意、检测和调整的方面。

由于当今设计工作范围和职责的改变,以及为了应付日趋强烈的开发时间压力,标准化和资讯管理成了非常重要的管理工作。

对设计软件的要求,也不像以往那样注重现有的数据库,而是较注重软件的更改和兼容能力。

对于CAD和PDM等管理软件和数据方面的结合也开始越来越重视了。

目前产品的更改频繁,产品的市场寿命较短等现象,使得许多工厂误入歧途,过分的注重生产线的灵活性或柔性,而忽略了相等重要的稳定性。

标准化的推行,可以在这两者之间获得一个很好的平衡。

适当的标准化有许多成本、质量和效益上的优势,但太多或不当的标准化对柔性和设计空间起了限制,所以用户必须培养能力来维持这两者的平衡。

2.0工艺和设计的关系

所谓SMT技术,指的是有关如何将基板、元件通过有效工艺材料和工艺组装起来,并确保有良好寿命的一门科技。

这其中便有许多种不同的组装形式和相应的工艺做法。

由于各种方式都有其优缺点和不同的工艺,设计师对这方面知识的吸收也就成了一件重要的工作。

比如说单面全SMT元件回流焊接技术的组装板,便具有外形薄和组装工艺较简单的优势。

但其组装密度还不是很高,以及不能采用插件可能是其应用限制。

而目前最多被采用的双面混装技术,具有密度较高,能混合采用SMD和插件,能发挥质量和成本之间的平衡利益。

但却含必须处理两道焊接程序的弱点。

诸如此类的认识,设计师都应该拥有,才能在其工作上发挥。

所以要成为一位非常出色的设计工程师,努力学习组装工艺方面的知识是重要的。

详细的工艺不在本讲座的范围之内,我们接下来谈谈一些常用工艺和设计方面的联系。

从以下

的例子中可以更好的了解到设计工作在整体SMT应用中的重要性。

2.1锡膏丝印工艺

这最常见的工艺包括4个主要工序,分别为对位、充填、整平、和释放。

要把整个工作做好,在基板上有一定的要求。

基板必须够平,焊盘间尺寸准确和稳定(即使在经过焊接工作的高温处理后),焊盘的设计应该配合丝印钢网,并有良好的基准点设计来协助自动定位对中,此外基板上的标签油印不能影响丝印部分,基板的设计必须方便丝印机的自动上下板,外形和厚度设计不能影响丝印时所需要的平整度等等。

这些都必须经过设计师的考虑。

另外常见的问题是基板上的绿油(阻焊涂层)印刷不断或太厚,铜焊盘的保护处理选择不当(比如在微间距应用上采用垂直热风整平VHASL处理,双回流应用中采用不当的OSP等等)都应该在设计时给予适当的考虑和处理。

丝印钢网的设计,有些工厂目前还是和焊盘设计分开考虑和进行的。

这是种不当的做法。

这两者是息息相关的,其设计指标应该同时考虑和进行。

常见的问题是钢网的开孔被设计为比焊盘CAD数据稍为小些,同时在CAD数据上有允许焊盘在CAD数据上有个较小的公差(例如允许有+/-0.05mm值)。

这使得在丝印钢网上的缩小失去其实用意义。

准确的做法应该是要求基板上焊盘的尺寸公差定为如-0.0,+0.05(即只允许比CAD大而不允许小)的范围。

钢网设计和制造可以由工艺或生产部门人员来执行,但必须和设计部的焊盘设计一块考虑。

2.2点锡膏工艺

如果厂内采用的锡膏涂布工艺是注射方式的,在基板上的焊盘设计又和丝印有所不同。

比如焊盘的长度应该受到更短的限制,铜焊盘的防氧化处理要求更严格。

但对绿油的要求却不高。

对于不同元件封装也应该有个别的考虑。

比如J引脚的PLCC元件,如果采用一般的做法在每一焊盘上分点两点锡膏,则有可能在回流前锡膏药和引脚的接触不良,引起引脚发生位移的问题。

如果采用点3锡点的方式,则又浪费宝贵的生产时间。

所以焊盘的尺寸设计因给予更改,要求对元件封装进行较严格的范围控制,同时将焊盘加宽和缩短以达到能采用单一锡点的工艺。

对于采用不同的泵技术,焊盘设计也有一定的不同,所以设计师严格对各种泵的性能和特点有足够的了解。

至少对本身厂内所使用的技术应该有足够的了解。

2.3黏胶应用

目前较常用的有点胶和印胶工艺。

点胶工艺中有各种的注射泵技术,还有适用于非常高产量的针印工艺。

目前更发展出新一代的喷射工艺。

印胶工艺方面的做法则和锡膏的丝印很相似。

各种的泵在胶点的量控制能力和点出的胶点外形上也有不同,这是设计和工艺人员应该了解和注意到的。

比如在同一直径胶点的高度上,采用针印工艺的高度就来得低些,喷射工艺最高,而其他的泵则处于他们之间。

这些变化也就影响了设计工作。

比如在元件外形和尺寸不变的情况之下,为了确保胶点能对元件的底部有足够的接触面,采用针印工艺的胶点虚设铜盘的宽度就应该较大,以处理更大的胶点直径。

除此之外,胶水的种类和品牌也影响胶点的外形。

所以在技术整合的观念下,设计规范是必须用工艺规范同时开发的。

2.4贴片工艺

贴片机是否能处理我们设计时所选的元件,把他们都准确的贴在所需的位置上,这问题直接影响了我们的生产。

所以在设计时的元件选择工作上,对厂内贴片机性能的了解也是关键的。

此外,出于贴片工序在整条生产线上经常是效率的"瓶颈"(也就是限制整条生产线效率的一切),在设计时我们还得同时考虑对生产效率的影响。

对于一个设计人员,在贴片这一工艺上应关注的有以下几方面:

1.能处理的元件范围和个别元件的处理能力(拾放可靠性)。

2.对各元件的对中能力(贴片精度和重复精度),包括基板的定位能力。

3.灵活性和转换能力(可行性、所需时间和资源)。

4.对各元件的产量。

5.基板的处理能力和范围(材料种类、厚度、外形比等等)。

市面上对贴片精度的规范和指标常出现不正确或不完整的说法。

正确的精度标法应包括分布系数Sigma和贴片精度平均值u的资料,或是以Cp和Cpk两者标出。

设备科人员应该协助提供这方面的资料给设计部人员。

通过对此的了解,设计师才能对其焊盘尺寸的考虑做出优化。

设计人员也应该进一步的了解贴片精度的误差的来源。

他们是有4个主要因素:

基板质量、设备对基板的识别和定位能力、设备的机械精度、和设备对元件的识别和对中能力组成的。

比如了解厂内设备对基板的识别和定位能力后,就能相应的设计出合适的基准点(大小、形状、位置分布和反差条件等),就能决定区域和专用基准点是否需要等来确保产品设计的可制造性。

对设备的灵活性方面的了解也一样。

知道了什么元件能被处理,处理的可靠性如何,在处理不同元件时是否需要某程度的设备转换,是自动还是人工转换,对生产时间的浪费影响有多重等等之后,在选择元件封装上也就能够做出更好的选择。

而这些考虑的内容也能够提醒采购部人员在采购时做出相应的要求。

2.5波峰焊接工艺

由于混装板和插件元件在应用上的某些优势,波峰焊接工艺目前仍是常见的组装焊接工艺之一。

波峰焊接工艺的问题,如桥接、"阴影效应"等已是众所周知的经验。

许多问题在设计上能够给予一定程度的协助,如为了减低SOIC引脚间桥接的"吸锡盘"或"盗锡盘"设计等。

设计人员应该对他们有足够的了解和应用。

应该注意的一点,是这些问题的程度,在波峰焊接工艺中是和设备原理和调制有很大的关系的。

设计工作必须严密的配合设备料的工艺调制规范进行。

比如说为了解决矩形件的"阴影效应"而增加的焊盘长度,到底应增加多少是和厂内的设备和工艺调制能力息息相关的。

忽略对厂内工艺和设备能力的了解而盲目搞设计规范是不正确的做法。

另一个经常受到关注的波峰焊接问题,是元件的受热问题。

对于双面有元件的产品来说,一面的元件有可能在经过波峰焊时完全浸在高温的熔锡中,那热冲击可以高达每秒200多度。

元件的封装是否经得起这样的热处理,在其寿命和性能方面会产生什么影响,是设计人员应该给予考虑的。

为了处理只有少数插件的产品,或为了保护一些对热较敏感的元件不受熔锡的热冲击,目前有些局部波峰焊接的工艺和设备。

厂内如果有采用这类设备,板上元件的编排会可能受到设备运作的一限制。

比如必须留下某些空位等等。

2.6回流焊接工艺

回流焊接工艺是目前最流行和常用的批量生产焊接技术。

回流焊接工艺的关键在于找出最适当的稳定时间关系(即所谓的温度曲线设置),并使它不断的重复。

温度曲线必须配合所采用的工艺材料(锡膏),注意的参数有升温速度、温度的高低、在各温度下的时间、和降温速度。

市场上出现了多种不同加热原理回流炉子,其实如何加温还是次要,最重要的是必须能够随意控制温度的变化和保持稳定。

市场上采用的加温法,仍然不外3个基本的热传播方式。

即传导、对流和辐射。

各种炉子的原理也可以这方法来分类。

在采用传导方式的有热板、热丝和液态热(很少用)三种主要技术。

采用对流的有强制热风、惰性热气、和气相回流(已基本不用)技术三种。

而采用辐射技术的,有红外线、激光和白光三大源流。

热板回流技术仍用在陶瓷基本工艺上,它只能用在单面板上,而必须靠基板的良好热传导性能才能发挥效益,限制了他在大部分电子组装业上的用途。

热丝技术在英文中常称hot-bar焊接技术,是因为他常用在以金属或陶瓷片为加热媒介的设备上而得名。

它适用于长、平和柔软引脚的元件上(如柔性板和TAB工艺上。

)通过控制温度、压力和时间来控制焊接效果。

需要不同的焊头来处理不同的元件。

是属于较慢的工艺。

工艺控制可能不易。

此技术可应用在返修工作上。

热风或热气技术有两种,一是适合批量生产的自动化回流炉子,另一是供局部焊接用的吹管技术(常用在返修技术上)。

通过空气或惰性气体的对流作用来传热。

在局部焊接技术上必须使用不同的吹管处理不同元件是它的一个弱点。

在使用空气为媒介时是个经济的方案,但工艺速度较慢。

白光和红外线在小批量生产的应用上,都是通过光学聚焦的原理将光内的热能集中起来,对焊点做局部加热的。

其好处是没有机械接触(不像热丝技术),局部焊接不会对元件封装造成过热的威胁,可以自动化编程。

缺点是焊接以点

进行,速度较慢,虽不会对元件封装有过热的威胁,但失控时对焊点有过热的可能,而白光对人的眼睛不利。

其加热速度快使他在对热容量大和封装对热较敏感的元件应用上有优势。

激光技术和以上的白光和红外线原理类似,只是媒介不同。

这是种较新的技术,还未普遍被接受,主要原因可能是价格方面(十分昂贵)。

激光的能量能够被很准确的进行控制,重复性很高,焊点可以很细(对微间距技术没困难),由于局部性很高而能保证很好的焊点质量(没有内部潜在应力)。

此技术或许有很好的发展潜能,但目前说法不一。

电感焊接技术,是一种通过电感效应的涡流加热原理来进行焊接的工艺。

具有没有机械接触、加热快和热容量高的优点。

缺点是技术不易掌握,焊点周边不能有某些金属部件,高频信号对某些电子元件不利和加热头的位置敏感度高等等。

目前的应用还不普遍。

火炬焊接技术,适用于焊点热容量特高的应用上。

如在基板上有大的插座或金属屏蔽板等等的场合。

也属于非接触式和局部焊接的工艺。

缺点是工艺经验较缺乏,对焊点的可靠性数据了解和考察不够(不过在某些应用上不是太重要)。

红外线用在批量生产焊接技术上已有很长的时间,它是热风回流技术成熟前的主要工艺。

目前还有些产家还在推荐远外线技术的炉子。

此技术的优点是加热效率较高,重复率很好,热容量也好,对一些回流工艺问题如吸锡(wicking)和立碑等较能应付。

缺点是产品板上的温度较大,对一些元件的外形和封装材料变化较大,而且有超温的可能。

另一更常见的批量焊接技术是热风回流技术,他基本是解决了红外线技术存在的问题,但设备的设计困难,好的设备价格高于红外线技术(差的设计性能不如红外线技术),而且应用上对知识的要求也较高,设备保养要求也高,设备选择不易,必须要有一套测试方法。

回流曲线设置的关键,在于将产品板上最热和最冷点找出,通过对炉温的调制使这两点的范围设置在锡膏性能的要求范围内,工作便可说是完成了。

板上热点和冷点的热学特,影响的因素很多,在设计产品时便应该考虑到和照顾到这些,使设计出来的产品上,热点和冷点的温差尽量做到最小为止。

这不但使生产容易控制,对设备的性能(和价格相关)和保养的要求也较低,而且对产品焊点的质量也较容易保证,是个设计时很重要的考虑点和做法。

3.0了解您的制造能力

了解厂内实际的制造能力,是推行DFM管理的重要部分。

工作包括对厂内设备的能力进行量化考察、规划和制定规范指标。

这做法的主要原因有四:

一是因为每个设计规范都有它特定的适用性或针对性,它只有在特定的条件下才能最优化的发挥其功能。

第二个原因是大多数的生产线都是不同的,即使设备的硬件配置一样,管理、工艺知识、品质标准等等软科学会使其不同。

所以在另一个工厂适用的设计规范,未必也适用于您的工厂。

只有完全和准确的了解您厂内的能力情况后,您才可能制定出一套优化的设计规范或标准。

第三个原因是许多有用和重要的资料,除非您亲身去考察、测试和记录,您不可能在市场上得到现成的,即使是设备供应商也提供不了。

第四个原因,是在优化设计工作上,根本没有所谓的通用标准可被使用。

在您的生产环境里,有什么是需要您的关注和量化了解的呢?

您可以从四个方面着手。

即生产线的功能(能做些什么?

)、生产线的柔性或灵活性(需要什么改变来处理工作的变更?

)、质量(能把产品做到多好?

包括长期寿命方面和直通率方面的考虑)?

以及生产效率(产量和成本)。

生产线能力规划的例子,比如每一条生产线对基板的处理能力范围,包括如基板的材料、基板的厚度范围、板的尺寸限制、重量限制、板边的留空要求、定位要求(如基准点、定位孔、边定位的厚度和曲翘限制等等)、以及如果采用自动条码识别系统的位置要求等,这些都必须有详细和准确的规划。

应注意这些规划应以整线而不是以个别设备的层次来进行的。

如果厂内有多条不同规范的线,可以考虑以统一规范(最严格的规范)或分等级来简化。

同样的,对于元件的处理能力,我们也应该给予了解和规划。

这方面可包括如各种常用元件的释放能力(以dpm计)、贴片机吸咀的种类和要求、对中技术和能力、贴片力度(静和动态)、供料器种类、数目和性能、以及各元件对速度效率的影响等。

对于各设备的性能和技术限制,我们了应该有足够的了解和记录。

比如厂内所采用的回流炉子是属于什么加热原理的,如果是热风原理,那它对排风变化的影响或灵敏度又如何;如果是红外线的对元件的外形和颜色有什么影响;炉

子的轨道是否会因为吸热而对板的两边造成冷区效应,程度又如何等等这类的性能问题,都应该给予详细的考察和记录在设计规范内。

除了设备的能力,整体的工艺能力也必须是规划的内容。

厂内应该有最少一份的工艺规范,内容详细的类出厂内工艺的能力和极限。

比如在锡膏工艺上能采用什么工艺(丝印、点锡)、达到什么程度(0.3mm间距、0.12mm开孔、AspectRatio1:

1.5、双面印刷能力等等)。

注意一切重要的条件(如锡膏种类、基板厚度和表面处理要求)也都必须清楚的列出。

订立设备和工艺规范的方法,可以配合供应商资料、生产线的实际经验(但必须是科学性的)和厂内设立的试验结果,使经过验证的数据经验被纳入设计数据库使用。

一切验证和分析、决策的过程都应该有份记录档案,方便日后的改进工作。

要正确和有效的进行以上的工作,您厂内必须具备良好的设备工程学和SMT工艺知识。

在这些能力未足够建立起来之前,推行的工作有可能是白费和误导的。

工厂管理应该注意这一点而不可冲动行事。

以免招到投入后没有效果的失败。

4.0基板和元件的选择

选择适当的材料是设计工作内的注意部分。

材料的选择必须考虑到他的寿命和可制造性。

许多设计人员只注重在元件的电气性能、供应和成本的做法是不全面的。

在电子工业中,大部分所用的材料都对温度有一定的反应敏感性。

而在电子板的组装过程中又必须经过一定程度,而有时又不只一次的高温处理。

所选用的元件和基板等是否会变质呢?

元件原有的寿命是否给缩短了呢?

这些也都是需要加以考虑的。

在产品的服务期内,产品本身也会经历一些热变化,如环境的温度变化,产品本身电源的接通和切断和产生的热功率等等。

这些热引起的体形变化对SMD焊点起着不利的影响,是SMT产品中的一个主要寿命问题根源。

所以在设计时对这方面的考虑也是重要的工作。

4.1基板的选择和考虑

基板的作用,除了提供组装所需的架构外,也提供电源和电信号所需的引线和散热的功能。

所以对于一个好的基板,我们要求它有以下的功能:

1,足够的机械强度(附扭曲、振动和撞击等)。

2,能够承受组装工艺中的热处理和冲击。

3,足够的平整度以适合自动化的组装工艺。

4,能承受多次的返修(焊接)工作。

5,适合PCB的制造工艺。

6,良好的电气性能(如阻抗、介质常数等)。

在基板材料的选择工作上,设计部门可以将所有产品性能参数(如耐湿性、布线密度、信号频率或速度等)和材料性能参数(如表面电阻、热导、温度膨胀系数等)的关系列下。

做为设计选择时的考虑用。

目前较常用的基板材料有XXXP

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 语文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1