双闭环控制直流电机调速系统.docx

上传人:b****3 文档编号:3452064 上传时间:2022-11-23 格式:DOCX 页数:15 大小:504.86KB
下载 相关 举报
双闭环控制直流电机调速系统.docx_第1页
第1页 / 共15页
双闭环控制直流电机调速系统.docx_第2页
第2页 / 共15页
双闭环控制直流电机调速系统.docx_第3页
第3页 / 共15页
双闭环控制直流电机调速系统.docx_第4页
第4页 / 共15页
双闭环控制直流电机调速系统.docx_第5页
第5页 / 共15页
点击查看更多>>
下载资源
资源描述

双闭环控制直流电机调速系统.docx

《双闭环控制直流电机调速系统.docx》由会员分享,可在线阅读,更多相关《双闭环控制直流电机调速系统.docx(15页珍藏版)》请在冰豆网上搜索。

双闭环控制直流电机调速系统.docx

双闭环控制直流电机调速系统

HarbinInstituteofTechnology

控制系统数字仿真与CAD

课程报告

 

题目:

“双闭环控制直流电机调速

系统”数字仿真实验

姓名:

专业:

电气工程及其自动化

班级:

学号:

完成时间:

“双闭环控制直流电机调速系统”仿真实验

摘要:

直流电机具有模型简单控制方便的优点,交流电机变频调速时总是将交流电机通过变换等效成直流电机后进行控制,所以直流电机调速系统的设计,在电机控制领域可以具有广泛的适用性。

在本次实验中,依次进行双闭环直流电动机调速系统的建模,设计电流环/调节器并进行电流环动态跟随性能仿真实验;设计转速环/调节器并进行转速环动态抗扰性能仿真实验;分析系统动态性能。

验证了直流电机双闭环调速系统的PID设计方法。

关键词:

系统建模,数字仿真,直流电机,双闭环PID控制,跟随与抗扰特性

1引言

电机驱动一个非常重要的方面就是进行调速,调速效果的好坏、调速系统的稳定性、抗扰性以及动态特性都是系统设计时所应重点考虑的。

本实验通过直流电机双闭环PID控制,使系统具有了较好的动态特性和抗扰特性。

虽然目前交流电机变频调速系统已经大面积代替直流电机调速系统。

但是直流电机具有模型简单控制方便的优点,因此交流电机变频调速时总是将交流电机通过变换等效成直流电机后进行控制。

研究典型的双闭环控制直流电机调速系统对于深入理解交流电机变频调速过程有重要意义。

2原理/建模

2.1额定励磁下直流电动机的动态数学模型

图1所示为直流电机的等效电路

图1直流电机动态模型

通过分析我们可以得到如下等式,

通过对两式进行拉式变换,我们可以得到电压与电流,以及电流与电动势之间的传递函数,通过传递函数我们可以得到直流电机的动态结构图,如图2所示

图2直流电机动态结构图

2.2晶闸管触发和整流装置的动态数学模型

在分析系统时往往把它们当作一个环节来看待。

这一环节的输入量是触发电路的控制电压Uct,输出量是理想空载整流电压Ud0。

把它们之间的放大系数Ks看成常数,晶闸管触发与整流装置可以看成是一个具有纯滞后的放大环节,其滞后作用是由晶闸管装置的失控时间引起的。

用单位阶跃表示纯滞后,并且经过拉氏变换后,可以得到输入与输出的传递函数如下,

简化后使之成为最小相位系统,则近似的结构图如下

图3晶闸管触发和整流装置的近似结构图

2.3比例放大器、测速发电机及电流互感器的数学模型

比例放大器、测速发电机和电流互感器的响应都可以认为是瞬时的,因此它们的放大系数也就是它们的传递函数。

2.4直流电机双闭环调速系统的动态模型结构图

通过以上分析可得直流电机的双闭环调速系统的动态模型如图4所示

图4双闭环调速系统动态结构图

3设计

3.1系统基本参数

系统中采用三相桥式晶闸管整流装置,基本参数如下:

直流电动机:

220V,13.6A,1480r/min,Ce=0.131V/(r/min),允许过载倍数λ=1.5;

晶闸管装置:

Ks=76;

电枢回路总电阻:

R=6.58Ω;

时间常数:

Tl=0.018s,Tm=0.25s;

反馈系数:

α=0.00337V/(r/min),β=0.4V/A;

反馈滤波时间常数:

Toi=0.005s,Ton=0.005s。

3.2PID调节器参数的设计

双闭环控制系统的动态结构图绘于图5,它增加了滤波环节,包括电流滤波、转速滤波和两个给定滤波环节。

其中Toi为电流反馈滤波时间常数,Ton为转速反馈滤波时间常数。

图5双闭环控制系统动态结构图

3.2.1电流调节器设计

对于电力拖动控制系统,电流环通常按典型Ⅰ型系统来设计。

要把内环校正成典型Ⅰ型系统,显然应该采用PI调节器,其传递函数可以写成

使用常用的工程设计方法,取得较好的动态性能,我们可取

将系统的实际数值带入后,我们可以得到

3.2.2转速调节器设计

对于电力拖动控制系统,转速环通常希望具有良好的抗扰性能,因此要把转速环校正成典型Ⅱ型系统。

如要把转速环校正成典型Ⅱ型系统,ASR也应该采用PI调节器,其传递函数为

按照典型Ⅱ型系统的参数选择方法,我们可以得出

将系统的实际数值带入后,我们同样可以得到

经过如上设计,得到的双闭环控制系统从理论上讲有如下动态性能:

电动机起动过程中电流的超调量为4.3%,转速的超调量为8.3%。

3.2.3ASR输出限幅值的确定

当ASR输出达到限幅值U*im,转速外环呈开环状态,转速的变化对系统不再产生影响。

双闭环系统变成一个电流无静差的单闭环系统,稳态时有

此处取Idm=20A,则U*im=0.4*20=8V。

4仿真实验/结果分析

4.1系统动态结构的Simulink建模

根据理论计算得到的参数,可得双闭环调速系统的动态结构图如图6所示。

图7为按照理论设计得到的转速输出波形。

从图7中可以清楚地看出,输出转速有很大的超调,最大可达83.3%,调整时间达1.7s之久,实际系统中这是所不能接受的。

图6双闭环调速系统动态结构图

图7理论设计条件下输出转速曲线

对ACR和ASR的参数进行整定,特别是速度控制器的参数。

就对其作出了适当的调整,将速度控制器的传递函数改成

,将电流调节器的传递函数改为

修正后的系统动态结构图如图8所示。

图9为控制系统参数修正后得到的转速输出波形。

从图9中可以清楚地看出,输出转速超调为25%,调整时间为2s。

转速超调与调整时间均符合一般要求。

图9修正后的双闭环调速系统动态结构图

图9修正后输出转速曲线

4.2电流环跟随性能仿真实验

将电流环从系统中分离出来。

电流环的模型如图10所示。

运用Simulink工具进行线性分析。

选择Tools菜单下的ControlDesign栏并选择LinearAnalysis。

运行后得到系统的单位阶跃响应如图11所示,Bode图如图12所示,Nyquist图如图13所示。

从实验结果图中可以得到电流环的时域特性,超调量约为PO=2%,稳态时间约为ts=0.05s;频域特性,剪切频率约为ωc=160rad/s,相角裕量约为δ=45°。

图10ACR模型

图11电流环的单位阶跃响应

图12电流环的Bode图

图13电流环的Nyquist图

4.3转速环抗扰性能仿真

4.3.1启动性能分析

图14、图15、图16分别为ASR的输出与电动机转速动态特性仿真结果,ACR的输出与电动机转速动态特性仿真结果以及电动机电流与电动机转速动态特性仿真结果。

图14ASR的输出特性

图15ACR的输出特性

图16电动机电流特性

从图14可以看出ASR从起动到稳速运行的过程中经历了两个状态,即饱和限幅输出与线性调节状态;从图15可以看出ACR从起动到稳速运行的过程中仅工作在一种状态,即线性调节状态;该系统对于起动特性来说,已达到预期目的;从图9和图16可以清楚地看出对于系统性能指标来说,起动过程中电流的超调量约为3%,转速的超调量约为25%。

这与理论最佳设计有一定差距,尤其是转速超调量略高一些。

4.3.2抗扰性能分析

实验中选取Starttime=0.0,Stoptime=5.0,仿真时间从0s到5.0s。

扰动加入的时间均为3.5s。

一般情况下,双闭环调速系统的干扰主要是负载突变与电网电压波动两种。

图17、图18分别绘出了电网电压突加(ΔU=100V)情况下晶闸管触发整流装置输出电压Ud0、电动机电枢电流Id与输出转速n的关系;图18、图19分别绘出了电网电压突减(ΔU=100V)情况下晶闸管触发整流装置输出电压Ud0、电动机电枢电流Id与输出转速n的关系;图20、图21分别绘出了突加负载(ΔI=12A)情况下晶闸管触发整流装置输出电压Ud0、电动机电枢电流Id与输出转速n的关系。

图17电网电压突加+100v的抗扰性能(Ud0)

图18电网电压突加+100v的抗扰性能(Id)

图19电网电压突加-100v的抗扰性能(Ud0)

图20电网电压突加-100v的抗扰性能(Id)

图21突加12A负载抗扰特性(Ud0)

图22突加12A负载抗扰特性(Id)

从图17至图20中可以看出系统对电网电压的大幅波动具有良好的抗扰能力。

在ΔU=100V的情况下,系统速降非常小,恢复时间约为tf=0.5s。

从图21和图22中可以看出系统对负载的大幅度突变具有良好的抗扰能力,在ΔI=12A的情况下系统速降约为Δn=40r/min,恢复时间约为tf=1.2s。

5结论

思考题:

1.在系统启动过程的第二阶段中,理想的电流特性为:

实际值小于给定/设定值,试说明为何?

答:

这是因为电动机反电动势呈线性增加,该扰动为一斜波扰动,而按典型Ⅰ型系统设计的ACR无法消除静差,因此实际值便小于给定值。

2.动态性能中,电流/转速特性的“超调量”与理论值是否有偏差?

如有偏差,试给出分析解释。

答:

动态性能中电流/转速特性的“超调量”与理论值有偏差,这可能是由于建模过程中的近似和计算过程中的舍入误差造成的。

3.在“双闭环直流电动机调速系统”中,电流调节器与速度调节器的输出都要设置“限幅”,试说明:

你是如何选取限幅值的?

答:

首先由电机的过载能力和拖动系统允许的最大加速度确定最大电流Idm,用Idm乘以ACR反馈系数就得到了限幅值。

4.假设系统中的励磁电压减小/增加,试说明:

系统转速将可能怎样变化?

答:

系统中的励磁电压减小,则会导致励磁电流减小,励磁电流与主磁通基本呈正比例关系。

反映到系统动态结构图中为参数Tm变大。

在双闭环结构中,这基本不会影响电机稳态转速,但是系统的启动时间和抗扰恢复时间会变长。

参考文献

[1]“控制系统数字仿真与CAD”实验指导书,2011

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 党团工作 > 入党转正申请

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1