《电池》优秀教案.docx

上传人:b****6 文档编号:3353527 上传时间:2022-11-22 格式:DOCX 页数:24 大小:44.11KB
下载 相关 举报
《电池》优秀教案.docx_第1页
第1页 / 共24页
《电池》优秀教案.docx_第2页
第2页 / 共24页
《电池》优秀教案.docx_第3页
第3页 / 共24页
《电池》优秀教案.docx_第4页
第4页 / 共24页
《电池》优秀教案.docx_第5页
第5页 / 共24页
点击查看更多>>
下载资源
资源描述

《电池》优秀教案.docx

《《电池》优秀教案.docx》由会员分享,可在线阅读,更多相关《《电池》优秀教案.docx(24页珍藏版)》请在冰豆网上搜索。

《电池》优秀教案.docx

《电池》优秀教案

电池(Battery)指盛有电解质溶液和金属电极以产生电流的杯、槽或其他容器或复合容器的部分空间,能将化学能转化成电能的装置。

具有正极、负极之分。

随着科技的进步,电池泛指能产生电能的小型装置。

如太阳能电池。

电池的性能参数主要有电动势、容量、比能量和电阻。

利用电池作为能量来源,可以得到具有稳定电压,稳定电流,长时间稳定供电,受外界影响很小的电流,并且电池结构简单,携带方便,充放电操作简便易行,不受外界气候和温度的影响,性能稳定可靠,在现代社会生活中的各个方面发挥有很大作用。

基本信息

中文名称

电池

外文名称

Battery

发明人

赫勒森

发明年代

1887年

定义

有电解质溶液和金属电极以产生电流的杯、槽或其他容器或复合容器的部分空间

1电池原理

2性能参数

3使用常识

4化学电池

5各种型号

6环保知识

7相关信息

8锂离子电池

9电池安全标准

基本介绍

电池的性能参数主要有电动势、容量、比能量和电阻。

电动势等于单位正电荷由负极通过电池内部移到正极时,电池非静电力(化学力)所做的功。

电动势取决于电极材料的化学性质,与电池的大小无关。

电池所能输出的总电荷量为电池的容量,通常用安培小时作单位。

在电池反应中,1千克反应物质所产生的电能称为电池的理论比能量。

电池的实际比能量要比理论比能量小。

因为电池中的反应物并不全按电池反应进行,同时电池内阻也要引起电动势降,因此常把比能量高的电池称做高能电池。

电池的面积越大,其内阻越小。

电池的能量储存有限,电池所能输出的总电荷量叫做它的容量,通常用安培小时作单位,它也是电池的一个重要参数。

原电池制成后即可以产生电流,但在放电完毕即被废。

在古代,人类有可能已经不断地在研究和测试“电”这种东西了。

一个被认为有数千年历史的粘土瓶在1932年于伊拉克的巴格达附近被发现。

它有一根插在铜制圆筒里的铁条-可能是用来储存静电用的,然而瓶子的秘密可能永远无法被揭晓。

不管制造这个粘土瓶的祖先是否知道有关静电的事情,但可以确定的是古希腊人绝对知道。

他们晓得如果摩擦一块琥珀,就能吸引轻的物体。

在十八世纪的四、五十年代,发电装置的改善和大气电现象的研究,吸引了物理学家们的广泛兴趣,

1745年,普鲁士的克莱斯特利用导线将摩擦所起的电引向装有铁钉的玻璃瓶。

当他用手触及铁钉时,受到猛烈的一击。

可能是在这个发现的启发下,莱顿大学的马森布罗克在1746年发明了收集电荷的“莱顿瓶”。

因为他看到好不容易收集的电却很容易地在空气中逐渐消失,他想寻找一种保存电的方法。

有一天,他用一支枪管悬在空中,用起电机与枪管连着,另用一根铜线从枪管中引出,浸入一个盛有水的玻璃瓶中,他让一个助手一只手握着玻璃瓶,马森布罗克在一旁使劲摇动起电机。

这时他的助手不小心将中另一只手与枪管碰上,他猛然感到一次强烈的电击,喊了起来。

马森布罗克于是与助手互换了一下,让助手摇起电机,他自己一手拿水瓶子,另一只手去碰枪管。

在一封信里他描述了这次实验结果:

“我想告诉你一个新奇但可怕的实验事实,但我警告你无论如何也不要再重复这个实验。

……把容器放在右手上,我试图用另一只手从充电的铁柱上引出火花。

突然,我的手受到了一下力量很大的打击,使我的全身都震动了,……手臂和身体产生了一种无法形容的恐怖感觉。

一句话,我以为我命休矣。

虽然马森布罗克不愿再做这个实验,但他由此得出结论:

把带电体放在玻璃瓶内可以把电保存下来。

只是当时搞不清楚起保存电作用的究竟是瓶子还是瓶子里的水,后来人们就把这个蓄电的瓶子称作“莱顿瓶”,这个实验称为“莱顿瓶实验”。

这种“电震”现象的发现,轰动一时,极大的增加了人们对莱顿瓶的关注。

马森布罗克的警告起了相反的作用,人们在更大规模地重复进行着这种实验,有时这种实验简直成了一种娱乐游戏。

人们用莱顿瓶作火花放电杀老鼠的表演,有人用它来点酒精和火药。

其中规模最壮观的一次示范表演是法国人诺莱特在巴黎圣母院前作的。

诺莱特邀请了法王路易十五的皇室成员临场观看表演。

他调来了七百个修道士,让他们手拉手排成一行,全长达900英尺,约275米,队伍十分壮观。

让排头的修道士用手拿住莱顿瓶,排尾的修道士手握莱顿瓶的引线,接着让莱顿瓶起电,结果七百个修道士因受电击几乎同时跳了起来,在场的人无不为之目瞪口呆。

诺莱特以令人信服的语气向人们解释了电的巨大威力。

后来人们很快又把电用于医学,将起电机产生的电通过病人身体,用于治疗半身不遂,神经痛等病症。

这种治疗方法一直使用,直到人们弄明白电的作用后,才停止下来。

1786年,意大利解剖学家伽伐尼在做青蛙解剖时,两手分别拿着不同的金属器械,无意中同时碰在青蛙的大腿上,青蛙腿部的肌肉立刻抽搐了一下,仿佛受到电流的刺激,而只用一种金属器械去触动青蛙,却并无此种反应。

伽伐尼认为,出现这种现象是因为动物躯体内部产生的一种电,他称之为“生物电”。

伽伐尼于1791年将此实验结果写成论文,公布于学术界。

伽伐尼的发现引起了物理学家们极大兴趣,他们竞相重复枷伐尼的实验,企图找到一种产生电流的方法,意大利物理学家伏特在多次实验后认为:

伽伐尼的“生物电”之说并不正确,青蛙的肌肉之所以能产生电流,大概是肌肉中某种液体在起作用。

为了论证自己的观点,伏特把两种不同的金属片浸在各种溶液中进行试验。

结果发现,这两种金属片中,只要有一种与溶液发生了化学反应,金属片之间就能够产生电流。

1799年,伏特把一块锌板和一块银板浸在盐水里,发现连接两块金属的导线中有电流通过。

于是,他就把许多锌片与银片之间垫上浸透盐水的绒布或纸片,平叠起来。

用手触摸两端时,会感到强烈的电流刺激。

伏特用这种方法成功的制成了世界上第一个电池──“伏特电堆”。

这个“伏特电堆”实际上就是串联的电池组。

它成为早期电学实验,电报机的电力来源。

为了证明自己大发现是对的,伏特决定更深入地了解电的来源。

一天,他拿出一块锡片和一枚银币,把这两种金属放在自己的舌头上,然后叫助手将金属导线把它们连接起来,霎时,他感到满嘴的酸味儿。

接着,他将银币和锡片交换了位置,当助手将金属导线接通的一瞬间,伏特感到满嘴的咸味。

意大利物理学家伏特就多次重复了伽伐尼的实验。

作为物理学家,他的注意点主要集中在那两根金属上,而不在青蛙的神经上。

对于伽伐尼发现的蛙腿抽搐的现象,他想这可能与电有关,但是他认为青蛙的肌肉和神经中是不存在电的,他推想电的流动可能是由两种不同的金属相互接触产生的,与金属是否接触活动的或死的动物无关。

实验证明,只要在两种金属片中间隔以用盐水或碱水浸过的(甚至只要是湿和)硬纸、麻布、皮革或其它海绵状的东西(他认为这是使实验成功所必须的),并用金属线把

两个金属片连接起来,不管有没有青蛙的肌肉,都会有电流通过。

这就说明电并不是从蛙的组织中产生的,蛙腿的作用只不过相当于一个非常灵敏的验电器而已。

1836年,英国的丹尼尔对“伏特电堆”进行了改良。

他使用稀硫酸作电解液,解决了电池极化问题,制造出第一个不极化,能保持平衡电流的锌─铜电池,又称“丹尼尔电池”。

此后,又陆续有去极化效果更好的“本生电池”和“格罗夫电池”等问世。

但是,这些电池都存在电压随使用时间延长而下降的问题。

1860年,法国的普朗泰发明出用铅做电极的电池。

这种电池的独特之处是,当电池使用一段使电压下降时,可以给它通以反向电流,使电池电压回升。

因为这种电池能充电,可以反复使用,所以称它为“蓄电池”。

然而,无论哪种电池都需在两个金属板之间灌装液体,因此搬运很不方便,特别是蓄电池所用液体是硫酸,在挪动时很危险。

也是在1860年,法国的雷克兰士(GeorgeLeclanche)还发明了世界广受使用的电池(碳锌电池)的前身。

它的负极是锌和汞的合金棒(锌——伏特原型电池的负极,经证明是作为负极材料的最佳金属之一),而它的正极是以一个多孔的杯子盛装着碾碎的二氧化锰和碳的混合物。

在此混合物中插有一根碳棒作为电流收集器。

负极棒和正极杯都被浸在作为电解液的氯化铵溶液中。

此系统被称为“湿电池”。

雷克兰士制造的电池虽然简陋但却便宜,所以一直到1880年才被改进的“干电池”取代

负极被改进成锌罐(即电池的外壳),电解液变为糊状而非液体,基本上这就是现在我们所熟知的碳锌电池。

1887年,英国人赫勒森发明了最早的干电池。

干电池的电解液为糊状,不会溢漏,便于携带,因此获得了广泛应用。

1890年ThomasEdison发明可充电的铁镍电池

1896年在美国批量生产干电池

1896年发明D型电池。

1899年WaldmarJungner发明镍镉电池.

1910年可充电的铁镍电池商业化生产

1911年中国建厂生产干电池和铅酸蓄电池(上海交通部电池厂)

1914年ThomasEdison发明碱性电池。

1934年SchlechtandAkermann发明镍镉电池烧结极板。

1947年Neumann开发出密封镍镉电池.

1949年LewUrry(Energizer)开发出小型碱性电池

1954年GeraldPearson,CalvinFullerandDarylChapin开发出太阳能电池。

1956年Energizer.制造第一个9伏电池

1956年中国建设第一个镍镉电池工厂(风云器材厂(755厂))

1960前后UnionCarbide.商业化生产碱性电池,中国开始研究碱性电池(西安庆华厂等三家合作研发)

1970前后出现免维护铅酸电池。

1970前后一次锂电池实用化。

1976年PhilipsResearch的科学家发明镍氢电池.

1980前后开发出稳定的用于镍氢电池的合金。

1983年中国开始研究镍氢电池(南开大学)

1987年中国改进镍镉电池工艺,采用发泡镍,电池容量提升40%

1987前中国商业化生产一次锂电池

1989年中国镍氢电池研究列入国家计划

1990前出现角型(口香糖型)电池,

1990前后镍氢电池商业化生产。

1991年Sony.可充电锂离子电池商业化生产

1992年KarlKordesch,JosefGsellmannandKlausTomantschger取得碱性充电电池专利

1992年BatteryTechnologies,Inc.生产碱性充电电池

1995年中国镍氢电池商业化生产初具规模

1999年可充电锂聚合物电池商业化生产2021年中国锂离子电池商业化生产

2021年后燃料电池,太阳能电池成为全世界瞩目的新能源发展问题的焦点

折叠编辑本段电池原理

在化学电池中,化学能直接转变为电能是靠电池内部自发进行氧化、还原等化学反应的结果,这种反应分别在两个电极上进行。

负极活性物质由电位较负并在电解质中稳定的还原剂组成,如锌、镉、铅等活泼金属和氢或碳氢化合物等。

正极活性物质由电位较正并在电解质中稳定的氧化剂组成,如二氧化锰、二氧化铅、氧化镍等金属氧化物,氧或空气,卤素及其盐类,含氧酸及其盐类等。

电解质则是具有良好离子导电性的材料,如酸、碱、盐的水溶液,有机或无机非水溶液、熔融盐或固体电解质等。

当外电路断开时,两极之间虽然有电位差(开路电压),但没有电流,存储在电池中的化学能并不转换为电能。

当外电路闭合时,在两电极电位差的作用下即有电流流过外电路。

同时在电池内部,由于电解质中不存在自由电子,电荷的传递必然伴随两极活性物质与电解质界面的氧化或还原反应,以及反应物和反应产物的物质迁移。

电荷在电解质中的传递也要由离子的迁移来完成。

因此,电池内部正常的电荷传递和物质传递过程是保证正常输出电能的必要条件。

充电时,电池内部的传电和传质过程的方向恰与放电相反;电极反应必须是可逆的,才能保证反方向传质与传电过程的正常进行。

因此,电极反应可逆是构成蓄电池的必要条件。

G为吉布斯反应自由能增量(焦);F为法拉第常数=96500库=26.8安·小时;n为电池反应的当量数。

这是电池电动势与电池反应之间的基本热力学关系式,也是计算电池能量转换效率的基本热力学方程式。

实际上,当电流流过电极时,电极电势都要偏离热力学平衡的电极电势,这种现象称为极化。

电流密度(单位电极面积上通过的电流)越大,极化越严重。

极化现象是造成电池能量损失的重要原因之一。

极化的原因有三:

①由电池中各部分电阻造成的极化称为欧姆极化;②由电极-电解质界面层中电荷传递过程的阻滞造成的极化称为活化极化;③由电极-电解质界面层中传质过程迟缓而造成的极化称为浓差极化。

减小极化的方法是增大电极反应面积、减小电流密度、提高反应温度以及改善电极表面的催化活性。

折叠编辑本段性能参数

折叠内容

电池的主要性能包括电动势、额定容量、额定电压、开路电压、内阻、充放电速率、阻抗、寿命和自放电率。

折叠电动势

电动势是两个电极的平衡电极电位之差,以铅酸蓄电池为例,E=Ф+0-Ф-0+RT/F*In(αH2SO4/αH2O)。

其中:

E—电动势

Ф+0—正极标准电极电位,其值为1.690

Ф-0—负极标准电极电位,其值为-0.356

R—通用气体常数,其值为8.314

T—温度,与电池所处温度有关

F—法拉第常数,其值为96500

αH2SO4—硫酸的活度,与硫酸浓度有关

αH2O—水的活度,与硫酸浓度有关

从上式中可看出,铅酸蓄电池的标准电动势为1.690-(-0.0.356)=2.046V,因此蓄电池的标称电压为2V。

铅酸蓄电池的电动势与温度及硫酸浓度有关。

折叠额定容量

在设计规定的条件(如温度、放电率、终止电压等)下,电池应能放出的最低容量,单位为安培小时,以符号C表示。

容量受放电率的影响较大,所以常在字母C的右下角以阿拉伯数字标明放电率,如C20210,表明在2021下的容量为50安·小时。

电池的理论容量可根据电池反应式中电极活性物质的用量和按法拉第定律计算的活性物质的电化学当量精确求出。

由于电池中可能发生的副反应以及设计时的特殊需要,电池的实际容量往往低于理论容量。

折叠额定电压

电池在常温下的典型工作电压,又称标称电压。

它是选用不同种类电池时的参考。

电池的实际工作电压随不同使用条件而异。

电池的开路电压等于正、负电极的平衡电极电势之差。

它只与电极活性物质的种类有关,而与活性物质的数量无关。

电池电压本质上是直流电压,但在某些特殊条件下,电极反应所引起的金属晶体或某些成相膜的相变会造成电压的微小波动,这种现象称为噪声。

波动的幅度很小但频率范围很宽,故可与电路中自激噪声相区别。

折叠开路电压

电池在开路状态下的端电压称为开路电压。

电池的开路电压等于电池在断路时(即没有电流通过两极时)电池的正极电极电势与负极的电极电势之差。

电池的开路电压用V开表示,即V开=Ф+-Ф-,其中Ф+、Ф-分别为电池的正负极电极电位。

电池的开路电压,一般均小于它的电动势。

这是因为电池的两极在电解液溶液中所建立的电极电位,通常并非平衡电极电位,而是稳定电极电位。

一般可近似认为电池的开路电压就是电池的电动势。

折叠内阻

电池的内阻是指电流通过电池内部时受到的阻力。

它包括欧姆内阻和极化内阻,极化内阻又包括电化学极化内阻和浓差极化内阻。

由于内阻的存在,电池的工作电压总是小于电池的电动势或开路电压。

电池的内阻不是常数,在充放电过程中随时间不断变化(逐渐变大),这是因为活性物质的组成,电解液的浓度和温度都在不断的改变。

欧姆内阻遵守欧姆定律,极化内阻随电流密度增加而增大,但不是线性关系。

常随电流密度增大而增加。

内阻是决定电池性能的一个重要指标,它直接影响电池的工作电压,工作电流,输出的能量和功率,对于电池来说,其内阻越小越好。

折叠充放电速率

有时率和倍率两种表示法。

时率是以充放电时间表示的充放电速率,数值上等于电池的额定容量(安·小时)除以规定的充放电电流(安)所得的小时数。

倍率是充放电速率的另一种表示法,其数值为时率的倒数。

原电池的放电速率是以经某一固定电阻放电到终止电压的时间来表示。

放电速率对电池性能的影响较大。

折叠阻抗

电池内具有很大的电极-电解质界面面积,故可将电池等效为一大电容与小电阻、电感的串联回路。

但实际情况复杂得多,尤其是电池的阻抗随时间和直流电平而变化,所测得的阻抗只对具体的测量状态有效。

折叠寿命

储存寿命指从电池制成到开始使用之间允许存放的最长时间,以年为单位。

包括储存期和使用期在内的总期限称电池的有效期。

储存电池的寿命有干储存寿命和湿储存寿命之分。

循环寿命是蓄电池在满足规定条件下所能达到的最大充放电循环次数。

在规定循环寿命时必须同时规定充放电循环试验的制度,包括充放电速率、放电深度和环境温度范围等。

折叠自放电率

电池在存放过程中电容量自行损失的速率。

用单位储存时间内自放电损失的容量占储存前容量的百分数表示。

折叠电池有关计算

其中E为电动势,r为电源内阻,内电压U内=Ir,E=U内+U外

适用范围:

任何电路

闭合电路中的能量转化:

E=U+Ir

EI=UI+I^2R

P释放=EI

P输出=UI

纯电阻电路中

P输出=I^2R

=E^2R/(R+r)^2

=E^2/(R^2+2r+r^2/R)

当r=R时P输出最大,P输出=E^2/4r(均值不等式)[2]

折叠编辑本段使用常识

折叠电池充电

不同电池各有特性,用户必须依照厂商说明书指示的方法进行充电。

在待机备用状态下,手机也要耗费电池,如果要进行快速充电,宜先将手机关闭或把电池拆下进行充电。

折叠快速充电

有些自动化的智能型快速充电器当指示灯信号转变时,只表示充满了90%,充电器会自动改用慢速充电将电池完全充满。

用户最好将电池完全充满后使用,否则会缩短使用时间。

折叠电池记忆效应

如果电池属镍镉电池,长期不彻底充、放电,会在电池内留下痕迹,降低电池容量,这种现象被称为电池记忆效应。

折叠定期消除记忆

方法是把电池完全放电,然后重新充满。

放电可利用放电器或具有放电功能的充电器,也可以利用手机待机备用模式,如要加速放电可把显示屏及电话按键的照明灯打开。

要确保电池能重新充满,应依照说明书的指示来控制时间,重复充、放电两至三次。

折叠锂电池的储存

锂电池可贮存在环境温度为-5°C—35°C,相对湿度不大于75%的清洁、干燥、通风的室内,应避免与腐蚀性物质接触,远离火源及热源。

电池电量保持标称容量的30%到50%。

推荐贮存的电池每6个月充电一次。

折叠编辑本段化学电池

折叠化学电池

化学电池是指通过电化学反应,把正极、负极活性物质的化学能,转化为电能的一类装置。

经过长期的研究、发展,化学电池迎来了品种繁多,应用广泛的局面。

大到一座建筑方能容纳得下的巨大装置,小到以毫米计的品种。

无时无刻不在为我们的美好生活服务。

现代电子技术的发展,对化学电池提出了很高的要求。

每一次化学电池技术的突破,都带来了电子设备革命性的发展。

现代社会的人们,每天的日常生活中,越来越离不开化学电池了。

现在世界上很多电化学科学家,把兴趣集中在作为电动汽车动力的化学电池领域。

折叠干电池和液体电池

干电池和液体电池的区分仅限于早期电池发展的那段时期。

最早的电池由装满电解液的玻璃容器和两个电极组成。

后来推出了以糊状电解液为基础的电池,也称做干电池。

现在仍然有“液体”电池。

一般是体积非常庞大的品种。

如那些做为不间断电源的大型固定型铅酸蓄电池或与太阳能电池配套使用的铅酸蓄电池。

对于移动设备,有些使用的是全密封,免维护的铅酸蓄电池,这类电池已经成功使用了许多年,其中的电解液硫酸是由硅凝胶固定或被玻璃纤维隔板吸付的。

 一次性电池和可充电电池 一次性电池俗称“用完即弃”电池,因为它们的电量耗尽后,无法再充电使用,只能丢弃。

常见的一次性电池包括碱锰电池、锌锰电池、锂电池、锌电池、锌空电池、锌汞电池、水银电池、氢氧电池和镁锰电池。

可充电电池按制作材料和工艺上的不同,常见的有铅酸电池、镍镉电池、镍铁电池、镍氢电池、锂离子电池。

其优点是循环寿命长,它们可全充放电2021次,有些可充电电池的负荷力要比大部分一次性电池高。

普通镍镉、镍氢电池使用中,特有的记忆效应,造成使用上的不便,常常引起提前失效。

折叠电池的理论充电时间

电池的理论充电时间:

电池的电量除以充电器的输出电流。

例如:

以一块电量为800MAH的电池为例,充电器的输出电流为500MA那么充电时间就等于800MAH/500MA=1.6小时,当充电器显示充电完成后,最好还要给电池大约半个小时左右的补电时间。

折叠燃料电池

燃料电池是一种将燃料的化学能透过电化学反应直接转化成电能的装置燃

料电池是利用氢气在阳极进行的是氧化反应,将氢气氧化成氢离子,而氧气在阴极进行还原反应,与由阳极传来的氢离子结合生成水。

氧化还原反应过程中就可以产生电流。

燃料电池的技术包括了出现碱性燃料电池(AFC)、磷酸燃料电池(PAFC)、质子交换膜燃料电池(PEMFC)、熔融碳酸盐燃料电池(MCFC)、固态氧化物燃料电池(SOFC),以及直接甲醇燃料电池(DMFC)等,而其中,利用甲醇氧化反应作为正极反应的燃料电池技术,更是被业界所看好而积极发展。

折叠干电池

常用的一种是碳-锌干电池。

负极是锌做的圆筒,内有氯化铵作为电解质,少量氯化锌、惰性填料及水调成的糊状电解质,正极是四周裹以掺有二氧化锰的糊状电解质的一根碳棒。

电极反应是:

负极处锌原子成为锌离子(Zn++),释出电子,正极处铵离子(NH4+)得到电子而成为氨气与氢气。

用二氧化锰驱除氢气以消除极化。

电动势约为1.5伏。

铅蓄电池最为常用,其极板是用铅合金制成的格栅,电解液为稀硫酸。

两极板均覆盖有硫酸铅。

但充电后,正极处极板上硫酸铅转变成二氧化铅,负极处硫酸铅转变成金属铅。

放电时,则发生反方向的化学反应。

铅蓄电池的电动势约为2伏,常用串联方式组成6伏或12伏的蓄电池组。

电池放电时硫酸浓度减小,可用测电解液比重的方法来判断蓄

电池是否需要充电或者充电过程是否可以结束。

铅蓄电池的优点是放电时电动势较稳定,缺点是比能量(单位重量所蓄电能)小,对环境腐蚀性强。

由正极板群、负极板群、电解液和容器等组成。

充电后的正极板是棕褐色的二氧化铅(PbO2),负极板是灰色的绒状铅(Pb),当两极板放置在浓度为27%~37%的硫酸(H2SO4)水溶液中时,极板的铅和硫酸发生化学反应,二价的铅正离子(Pb2+)转移到电解液中,在负极板上留下两个电子(2e-)。

由于正负电荷的引力,铅正离子聚集在负极板的周围,而正极板在电解液中水分子作用下有少量的二氧化铅(PbO2)渗入电解液,其中两价的氧离子和水化合,使二氧化铅分子变成可离解的一

种不稳定的物质——氢氧化铅〔Pb(OH4〕)。

氢氧化铅由4价的铅正离子(Pb4+)和4个氢氧根〔4(OH)-〕组成。

4价的铅正离子(Pb4+)留在正极板上,使正极板带正电。

由于负极板带负电,因而两极板间就产生了一定的电位差,这就是电池的电动势。

当接通外电路,电流即由正极流向负极。

在放电过程中,负极板上的电子不断经外电路流向正极板,这时在电解液内部因硫酸分子电离成氢正离子(H+)和硫酸根负离子(SO42-),在离子电场力作用下,两种离子分别向正负极移动,硫酸根负离子到达负极板后与铅正离子结合成硫酸铅(PbSO4)。

在正极板上,由于电子自外电路流入,而与4价的铅正离子(Pb4+)化合成2价的铅正离子(Pb2+),并立即与正极板附近的硫酸根负离子结合成硫酸铅附着在正极上。

随着蓄电池的放电,正负极板都受到硫化,同时电解液中的硫酸逐渐减少,而水分增多,从而导致电解液的比重下降在实际使用中,可以通过测定电解液的比重来确定蓄电池的放电程度。

在正常使用情况下,铅蓄电池不宜放电过度,否则将使和活性物质混在一起的细小硫酸铅晶体结成较大的体,这不仅增加了极板的电阻,而且在充电时很难使它再还原,直接影响蓄池的容量和寿命。

铅蓄电池充电是放电的逆过程。

铅蓄电池的工作电压平稳、使用温度及使用电流范围宽、能充放电数百个循环、贮存性能好(尤其适于干式荷电贮存)、造价较低,因而应用广泛。

采用新型铅合金和电解液添加纳米碳溶胶,可改进铅

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 表格模板 > 调查报告

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1