利用Ansys对Eicher1110底盘车架进行分析与验证外文文献翻译中英文翻译外文翻译.docx

上传人:b****6 文档编号:3309768 上传时间:2022-11-21 格式:DOCX 页数:18 大小:2.75MB
下载 相关 举报
利用Ansys对Eicher1110底盘车架进行分析与验证外文文献翻译中英文翻译外文翻译.docx_第1页
第1页 / 共18页
利用Ansys对Eicher1110底盘车架进行分析与验证外文文献翻译中英文翻译外文翻译.docx_第2页
第2页 / 共18页
利用Ansys对Eicher1110底盘车架进行分析与验证外文文献翻译中英文翻译外文翻译.docx_第3页
第3页 / 共18页
利用Ansys对Eicher1110底盘车架进行分析与验证外文文献翻译中英文翻译外文翻译.docx_第4页
第4页 / 共18页
利用Ansys对Eicher1110底盘车架进行分析与验证外文文献翻译中英文翻译外文翻译.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

利用Ansys对Eicher1110底盘车架进行分析与验证外文文献翻译中英文翻译外文翻译.docx

《利用Ansys对Eicher1110底盘车架进行分析与验证外文文献翻译中英文翻译外文翻译.docx》由会员分享,可在线阅读,更多相关《利用Ansys对Eicher1110底盘车架进行分析与验证外文文献翻译中英文翻译外文翻译.docx(18页珍藏版)》请在冰豆网上搜索。

利用Ansys对Eicher1110底盘车架进行分析与验证外文文献翻译中英文翻译外文翻译.docx

利用Ansys对Eicher1110底盘车架进行分析与验证外文文献翻译中英文翻译外文翻译

附录

IndiaInternationalJournalofEmergingTrends&TechnologyinComputerScience(IJETTCS)

WebSite:

www.ijettcs.orgEmail:

editor@ijettcs.org,editorijettcs@

Volume2,Issue2,March–April2013ISSN2278-6856

AnalysisandvalidationofEicher11.10chassisframeusingAnsys

.TusharM.Patel1,Dr.M.G.Bhatt2andHarshadK.Patel3

1ResearchScholar,MewarUniversity,Gangrar,Rajasthan,India.

2AssociateProfessor,SSEC,Bhavnagar,Gujarat,India

3MEScholar,LDRP-ITR,Gandhinagar,Gujarat,

Abstract:

Truckchassisisthestructuralbackboneofanyvehicle.Themainfunctionofthetruckchassisistosupportthecomponentsandpayloadplaceduponit.Thechassisframehastowithstandthestressesdevelopedaswellasdeformationoccursinitandthatshouldbewithinalimit.ThispaperpresentsthestudyofthestressdevelopedinchassisanddeformationofchassisframeofEICHER11.10.ThestressanddeformationhasbeencalculatedforthechassisframeandtheFEanalysishasbeendoneforthevalidationonthechassisframemodel.Themodelofthechassishasbeendevelopedinsolidworks2009andstaticstructuralanalysishasbeendoneinANSYSworkbench.

Keywords:

FEA,TruckChassis,StructuralAnalysis,LadderFrame

1.INTRODUCTION

Automobilechassisusuallyreferstothelowerbodyofthevehicleincludingthetires,engine,frame,drivelineandsuspension.Outofthese,theframeprovidesnecessarysupporttothevehiclecomponentsplacedonit.Alsotheframeshouldbestrongenoughtowithstandshock,twist,vibrationsandotherstresses.Thechassisframeconsistsofsidemembersattachedwithaseriesofcrossmembers.Alongwiththestrength,animportantconsiderationinthechassisdesignistoincreasethestiffness(bendingandtorsion)characteristics.Adequatetorsionalstiffnessisrequiredtohavegoodhandlingcharacteristics.Normallythechassisaredesignedonthebasisofstrengthandstiffness.Intheconventionaldesignprocedurethedesignisbasedonthestrengthandemphasisisthengiventoincreasethestiffnessofthechassis,withverylittleconsiderationtotheweightofthechassis.Onesuchdesignprocedureinvolvestheaddingofstructuralcrossmembertotheexistingchassistoincreaseitstorsionalstiffness.Asaresultweightofthechassisincreases.Thisincreaseinweightreducesthefuelefficiencyandincreasesthecostduetoextramaterial.Thedesignofthechassiswithadequatestiffnessandstrengthisnecessary.

2、LITERATUREREVIEW

Manyresearchershadconductedanalysisonchassisofvariousheavyvehicles.Thedynamiccharacteristicsoftruckchassissuchasthenaturalfrequencyandmodeshapeweredeterminedusingfiniteelementmethod.ExperimentalmodalanalysiswascarriedouttovalidatetheFEmodels[2].VijayPateletal.performedthestaticstructuralanalysisofthetruckchassis.Structuralsystemsofthechassiscanbeeasilyanalyzedusingthefiniteelementtechniques.Soaproperfiniteelementmodelofthechassishasbeendeveloped.ThechassiswasmodeledinPRO-E.FEAwasdoneonthemodeledchassisusingtheANSYSWorkbench.Thehigheststressproducewas106.08MPabyFEanalysis.Thecalculatedmaximumshearstresswas95.43Mpa.TheresultofFEanalysiswas10%biggerthantheresultofanalyticalcalculation.Themaximumdisplacementofnumericalsimulationresultwas3.0294mm.Theresultofnumericalsimulationwas5.92%biggerthantheresultofanalyticalcalculationwhichis2.85mm.Thedifferencewascausedbysimplificationofmodelanduncertaintiesofnumericalcalculation[3].AbdRahmanetal.investigatedstressanalysisonaheavy-dutytruckchassisusingfiniteelementmethod.Finiteelementresulthadshownthatthecriticalpointofstressoccursatopeningofchassiswhichwasincontacttothebolt.Thusitwasimportanttoreducestressmagnitudeatthespecificlocation.PreviousFEAagreewiththemaximumdeflectionofsimplebeamloadedbyuniformlydistributedforce[4].Ebrahimietal.constructedahaytrailermodelanditscomponentsanalysiswascarriedout[5].Saneetal.performedstressanalysisonalightcommercialvehiclechassisusingiterativeprocedureforreductionofstresslevelatcriticallocations[6].Koszalkaetal.accomplishedstressanalysisonaframeofsemilowloaderusingFEM.Twoversionsofframedesignwereanalyzed,focusingonthepartofbeamwherethehigheststresseswerelocated[7].

3、FINITEELEMENTANALYSIS

3.1、BasicConceptofFEM

Thefiniteelementmethod(FEM)isacomputationaltechniqueusedtoobtainapproximatesolutionsofboundaryvalueproblemsinengineering.Simplystated,aboundaryvalueproblemisamathematicalprobleminwhichoneormoredependentvariablesmustsatisfyadifferentialequationeverywherewithinaknowndomainofindependentvariablesandsatisfyspecificconditionsontheboundaryofthedomain.

AnunsophisticateddescriptionoftheFEmethodisthatitinvolvescuttingastructureintoseveralelements(piecesofstructure),describingthebehaviorofeachelementinasimpleway,thenreconnectingelementsatnodesasifnodeswerepinsordropsofgluethatholdelementstogether(Figure1).Thisprocessresultsinasetofsimultaneousalgebraicequations.Instressanalysistheseequationareequilibriumequationsofthenodes.Theremaybeseveralhundredorseveralthousandsuchequations,whichmeanthatcomputerimplementationismandatory.

Figure1:

Discretizationofmodel[4]

3.2、AGeneralProcedureforFEA。

Therearethreemainsteps,namely:

preprocessing,solutionandpostprocessing.Inpreprocessing(modeldefinition)includes:

definethegeometricdomainoftheproblem,theelementtype(s)tobeused,thematerialpropertiesoftheelements,thegeometricpropertiesoftheelements(length,area,andthelike),theelementconnectivity(meshthemodel),thephysicalconstraints(boundaryconditions)andtheloadings.

Insolutionincludes:

thegoverningalgebraicequationsinmatrixformandcomputestheunknownvaluesoftheprimaryfieldvariable(s)areassembled.Thecomputedresultsarethenusedbybacksubstitutiontodetermineadditional,derivedvariables,suchasreactionforces,elementstressesandheatflow.Actuallythefeaturesinthisstepsuchasmatrixmanipulation,numericalintegrationandequationsolvingarecarriedoutautomaticallybycommercialsoftware.

Inpostprocessing,theanalysisandevaluationoftheresultisconductedinthisstep.Examplesofoperationsthatcanbeaccomplishedincludesortelementstressesinorderofmagnitude,checkequilibrium,calculatefactorsofsafety,plotdeformedstructuralshape,animatedynamicmodelbehaviorandproducecolor-codedtemperatureplots.Thelargesoftwarehasapreprocessor

andpostprocessortoaccompanytheanalysisportionandthebothprocessorcancommunicatewiththeotherlargeprograms.Specificproceduresofpreandpostaredifferentdependentupontheprogram。

4、MODELINGOFEXISTINGCHASSISFRAME

.Themodelofexistingchassisasperthedimensioniscreatedinsolidworks2009asshownonFigure2.ThemodelisthensavedinIGESformatwhichcanbedirectlyimportedintoANSYSworkbench.Figure3showstheimportedmodelinANSYSworkbench.

.

Figure2:

CADmodelofchassisinsolidworks2009

Figure3:

GeometryofchassisframeinAnsys

4.1.MaterialofModel

Fortheframegeometryofchassisgenerallysteelanditsalloysareused.Fortheframemodels,varietyofmaterials,compositematerialsanddifferentkindofalloyscanbeused.Inthepresentstudy,ST52isusedanditspropertiesareasgivenbelow.

Table1:

Materialpropertiesofchassis[1]

MaterialST52

ModulusofElasticityE2x105N/mm2

PossionRatio0.3

TensileStrength520N/mm2

YieldStrength360N/mm2

4.2.ConnectionType

Theconnectiontypebetweenthesidebars,bracketandcrossbarcanbewelded,rivetedoritcanbebolted.NormallyrivetedjointisusedsoheretherivetedconnectionisdefinedinmodelingasshowninFigure4.2

Figure4:

Connectiontypeofchassisframe

4.3MeshingofChassisFrame

Themeshingisdoneonthemodelwith85466No.Ofnodesand38369No.ofTetrahedralelements.Figures5and6showtetrahedralelementandmeshingofmodel。

 

Figure5:

Tennodetetrahedralelement

Figure6:

Meshingofchassisframe

4.4.LoadingConditionofChassisFrame

Thetruckchassismodelisloadedbystaticforcesfromthetruckbodyandload.Forthismodel,themaximumloadedweightoftruckandbodyis10,000kg.Theloadisassumedasauniformdistributedobtainedfromthemaximumloadedweightdividedbythetotallengthofchassisframe.DetailloadingofmodelisshowninFigure7and8.Themagnitudeofforceontheuppersideofchassisis117720Nwhichiscarriedbytwosidebarssoloadononesidebaris58860N.

Figure7:

Loadonfirstsidebarofchassisframe

Figure8:

Loadonsecondsidebarofchassisframe

5、RESULTOFANALYSIS

 

Figure9:

Flowchartforvalidation

Theanalysisdoneonthechassismodelgivesthemaximumgeneratedshearstressvalue100.13KN(figure11).Basedonstaticsafetyfactortheory,themagnitudeofsafetyfactorforthisstructureis1.43[4].Theformulaofdesignstressisdefinedby[1]

DesignStress=YieldStress/FactorofSafety

J.P.Vidosicrecommendssomevalueofsafetyfactorforvariousconditionofloadingandmaterialofstructures.Thevalueof1.5to2forwellknownmaterialsunderreasonablyenvironmentalcondition,subjectedtoloadsandstressesthatcanbedeterminedreadily.Basedonthisresult,itisnecessarytoreducethestressmagnitudeofcriticalpointinordertogetthesatisfySFvalueoftruckchassis.Thetruckcha

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 农学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1