空调专业毕业设计外文翻译工程热力学和制冷循环.docx

上传人:b****6 文档编号:3287989 上传时间:2022-11-21 格式:DOCX 页数:12 大小:103.75KB
下载 相关 举报
空调专业毕业设计外文翻译工程热力学和制冷循环.docx_第1页
第1页 / 共12页
空调专业毕业设计外文翻译工程热力学和制冷循环.docx_第2页
第2页 / 共12页
空调专业毕业设计外文翻译工程热力学和制冷循环.docx_第3页
第3页 / 共12页
空调专业毕业设计外文翻译工程热力学和制冷循环.docx_第4页
第4页 / 共12页
空调专业毕业设计外文翻译工程热力学和制冷循环.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

空调专业毕业设计外文翻译工程热力学和制冷循环.docx

《空调专业毕业设计外文翻译工程热力学和制冷循环.docx》由会员分享,可在线阅读,更多相关《空调专业毕业设计外文翻译工程热力学和制冷循环.docx(12页珍藏版)》请在冰豆网上搜索。

空调专业毕业设计外文翻译工程热力学和制冷循环.docx

空调专业毕业设计外文翻译工程热力学和制冷循环

附录B英文翻译

THERMODYNAMICSANDREFRIGERATIONCYCLES

THERMODYNAMICSisthestudyofenergy,itstransformations,anditsrelationtostatesofmatter.Thischaptercoverstheapplicationofthermodynamicstorefrigerationcycles.Thefirstpartreviewsthefirstandsecondlawsofthermodynamicsandpresentsmethodsforcalculatingthermodynamicproperties.Thesecondandthirdpartsaddresscompressionandabsorptionrefrigerationcycles,twocommonmethodsofthermalenergytransfer.

THERMODYNAMICS

Athermodynamicsystemisaregioninspaceoraquantityofmatterboundedbyaclosedsurface.Thesurroundingsincludeeverythingexternaltothesystem,andthesystemisseparatedfrom

thesurroundingsbythesystemboundaries.Theseboundariescanbemovableorfixed,realorimaginary.Entropyandenergyareimportantinanythermodynamicsystem.Entropymeasuresthemoleculardisorderofasystem.Themoremixedasystem,thegreateritsentropy;anorderlyorunmixedconfigurationisoneoflowentropy.Energyhasthecapacityforproducinganeffectandcanbecategorizedintoeitherstoredortransientforms.

StoredEnergy

Thermal(internal)energyiscausedbythemotionofmoleculesand/orintermolecularforces.

Potentialenergy(PE)iscausedbyattractiveforcesexistingbetweenmolecules,ortheelevationofthesystem.

(1)

where

m=mass

g=localaccelerationofgravity

z=elevationabovehorizontalreferenceplane

Kineticenergy(KE)istheenergycausedbythevelocityofmoleculesandisexpressedas

(2)

where

Visthevelocityofafluidstreamcrossingthesystemboundary.

Chemicalenergyiscausedbythearrangementofatomscomposingthemolecules.

Nuclear(atomic)energyderivesfromthecohesiveforcesholdingprotonsandneutronstogetherastheatom’snucleus.

EnergyinTransition

HeatQisthemechanismthattransfersenergyacrosstheboundariesofsystemswithdifferingtemperatures,alwaystowardthelowertemperature.Heatispositivewhenenergyisaddedtothesystem(seeFigure1).

Workisthemechanismthattransfersenergyacrosstheboundariesofsystemswithdifferingpressures(orforceofanykind),alwaystowardthelowerpressure.Ifthetotaleffectproducedinthesystemcanbereducedtotheraisingofaweight,thennothingbutworkhascrossedtheboundary.Workispositivewhenenergyisremovedfromthesystem(seeFigure1).

MechanicalorshaftworkWistheenergydeliveredorabsorbedbyamechanism,suchasaturbine,aircompressor,orinternalcombustionengine.

Flowworkisenergycarriedintoortransmittedacrossthesystemboundarybecauseapumpingprocessoccurssomewhereoutsidethesystem,causingfluidtoenterthesystem.Itcanbe

moreeasilyunderstoodastheworkdonebythefluidjustoutsidethesystemontheadjacentfluidenteringthesystemtoforceorpushitintothesystem.Flowworkalsooccursasfluidleavesthe

system.

Flowwork=pv(3)

wherepisthepressureandvisthespecificvolume,orthevolumedisplacedperunitmassevaluatedattheinletorexit.

Apropertyofasystemisanyobservablecharacteristicofthesystem.Thestateofasystemisdefinedbyspecifyingtheminimumsetofindependentproperties.ThemostcommonthermodynamicpropertiesaretemperatureT,pressurep,andspecificvolumevordensityρ.Additionalthermodynamicpropertiesincludeentropy,storedformsofenergy,andenthalpy.

Frequently,thermodynamicpropertiescombinetoformotherproperties.Enthalpyhisanimportantpropertythatincludesinternalenergyandflowworkandisdefinedas

(4)

whereuistheinternalenergyperunitmass.

Eachpropertyinagivenstatehasonlyonedefinitevalue,andanypropertyalwayshasthesamevalueforagivenstate,regardlessofhowthesubstancearrivedatthatstate.

Aprocessisachangeinstatethatcanbedefinedasanychangeinthepropertiesofasystem.Aprocessisdescribedbyspecifyingtheinitialandfinalequilibriumstates,thepath(ifidentifiable),andtheinteractionsthattakeplaceacrosssystemboundariesduringthe

process.

Acycleisaprocessoraseriesofprocesseswhereintheinitialandfinalstatesofthesystemareidentical.Therefore,attheconclusionofacycle,allthepropertieshavethesamevaluetheyhadatthebeginning.Refrigerantcirculatinginaclosedsystemundergoesa

cycle.

Apuresubstancehasahomogeneousandinvariablechemicalcomposition.Itcanexistinmorethanonephase,butthechemicalcompositionisthesameinallphases.

Ifasubstanceisliquidatthesaturationtemperatureandpressure,itiscalledasaturatedliquid.Ifthetemperatureoftheliquidislowerthanthesaturationtemperaturefortheexistingpressure,itiscalledeitherasubcooledliquid(thetemperatureislowerthanthesaturationtemperatureforthegivenpressure)oracompressedliquid(thepressureisgreaterthanthesaturationpressureforthegiventemperature).

Whenasubstanceexistsaspartliquidandpartvaporatthesaturationtemperature,itsqualityisdefinedastheratioofthemassofvaportothetotalmass.Qualityhasmeaningonlywhenthesubstanceissaturated(i.e.,atsaturationpressureandtemperature).Pressureandtemperatureofsaturatedsubstancesarenotindependentproperties.

Ifasubstanceexistsasavaporatsaturationtemperatureandpressure,itiscalledasaturatedvapor.(Sometimesthetermdrysaturatedvaporisusedtoemphasizethatthequalityis100%.)

Whenthevaporisatatemperaturegreaterthanthesaturationtemperature,itisasuperheatedvapor.Pressureandtemperatureofasuperheatedvaporareindependentproperties,becausethetemperaturecanincreasewhilepressureremainsconstant.Gasessuchasairatroomtemperatureandpressurearehighlysuperheatedvapors.

FIRSTLAWOFTHERMODYNAMICS

Thefirstlawofthermodynamicsisoftencalledthelawofconservationofenergy.Thefollowingformofthefirst-lawequationisvalidonlyintheabsenceofanuclearorchemicalreaction.

Basedonthefirstlaworthelawofconservationofenergyforanysystem,openorclosed,thereisanenergybalanceas

NetamountofenergyNetincreaseofstored

=

addedtosystemenergyinsystem

or

[Energyin]–[Energyout]=[Increaseofstoredenergyinsystem]

Figure1illustratesenergyflowsintoandoutofathermodynamicsystem.Forthegeneralcaseofmultiplemassflowswithuniformpropertiesinandoutofthesystem,theenergybalancecanbewritten

(5)

wheresubscriptsiandfrefertotheinitialandfinalstates,respectively.

Nearlyallimportantengineeringprocessesarecommonlymodeledassteady-flowprocesses.Steadyflowsignifiesthatallquantitiesassociatedwiththesystemdonotvarywithtime.Consequently,

(6)

whereh=u+pvasdescribedinEquation(4).

Asecondcommonapplicationistheclosedstationarysystemforwhichthefirstlawequationreducesto

(7)

SECONDLAWOFTHERMODYNAMICS

Thesecondlawofthermodynamicsdifferentiatesandquantifiesprocessesthatonlyproceedinacertaindirection(irreversible)fromthosethatarereversible.Thesecondlawmaybedescribedinseveralways.Onemethodusestheconceptofentropyflowinanopensystemandtheirreversibilityassociatedwiththeprocess.Theconceptofirreversibilityprovidesaddedinsightintotheoperationofcycles.Forexample,thelargertheirreversibilityinarefrigerationcycleoperatingwithagivenrefrigerationloadbetweentwofixedtemperaturelevels,thelargertheamountofworkrequiredtooperatethecycle.Irreversibilitiesincludepressuredropsinlinesand

heatexchangers,heattransferbetweenfluidsofdifferenttemperature,andmechanicalfriction.Reducingtotalirreversibilityinacycleimprovescycleperformance.Inthelimitofnoirreversibilities,acycleattainsitsmaximumidealefficiency.Inanopensystem,thesecondlawofthermodynamicscanbedescribedintermsofentropyas

(8)

where

dS=totalchangewithinsystemintimedtduringprocesssystem

δms=entropyincreasecausedbymassentering(incoming)

δms=entropydecreasecausedbymassleaving(exiting)

δQ/T=entropychangecausedbyreversibleheattransferbetweensystemandsurroundingsattemperatureT

dI=entropycausedbyirreversibilities(alwayspositive)

Equation(8)accountsforallentropychangesinthesystem.Rearranged,thisequationbecomes

(9)

Inintegratedform,ifinletandoutletproperties,massflow,andinteractionswiththesurroundingsdonotvarywithtime,thegeneralequationforthesecondlawis

(10)

Inmanyapplications,theprocesscanbeconsideredtooperatesteadilywithnochangeintime.Thechangeinentropyofthesystemisthereforezero.Theirreversibilityrate,whichistherateofentropyproductioncausedbyirreversibilitiesintheprocess,canbedeterminedbyrearrangingEquation(10):

(11)

Equation(6)canbeusedtoreplacetheheattransferquantity.Notethattheabsolutetemperatureofthesurroundingswithwhichthesystemisexchangingheatisusedinthelastterm.Ifthetemper-

atureofthesurroundingsisequaltothesystemtemperature,heatistransferredreversiblyandthelastterminEquation(11)equalszero.

Equation(11)iscommonlyappliedtoasystemwithonemassflowin,thesamemassflowout,nowork,andnegligiblekineticorpotentialenergyflows.CombiningEquations(6)and(11)yields

(12)

Inacycle,thereductionofworkproducedbyapowercycle(ortheincreaseinworkrequiredbyarefrigerationcycle)equalstheabsoluteambienttemperaturemultipliedbythesumofirreversibilitiesinallprocessesinthecycle.Thus,thedifferenceinreversibleandactualworkforanyrefrigerationcycle,theoreticalorreal,operatingunderthesameconditions,becomes

(13)

THERMODYNAMICANAL

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学教育 > 语文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1