Microsoft Word 文档.docx

上传人:b****6 文档编号:3282794 上传时间:2022-11-21 格式:DOCX 页数:11 大小:392.17KB
下载 相关 举报
Microsoft Word 文档.docx_第1页
第1页 / 共11页
Microsoft Word 文档.docx_第2页
第2页 / 共11页
Microsoft Word 文档.docx_第3页
第3页 / 共11页
Microsoft Word 文档.docx_第4页
第4页 / 共11页
Microsoft Word 文档.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

Microsoft Word 文档.docx

《Microsoft Word 文档.docx》由会员分享,可在线阅读,更多相关《Microsoft Word 文档.docx(11页珍藏版)》请在冰豆网上搜索。

Microsoft Word 文档.docx

MicrosoftWord文档

FailureofRapidPrototypeMoldsduringInjectionMolding

J.S.Colton’,J.Crawford’,G.Pham’,V.Rodet’

CenterforPolymerProcessing,SchoolofMechanicalEngineering,

GeorgiaInstituteofTechnology,Atlanta,Georgia,USA

SubmittedbyK.K.Wang(I),Ithaca,NewYork,USA

1

Abstract

Stereolithographyrapidtoolingmaterials(typicallyepoxy-basedphotopolymers)showgreatpromise

forinjectionmoldingoflimitednumbersofparts,greatlyreducingthetimetoproduct.Yet,theypresentchallengestodesignersbecauseoftheirstrength,thermalcharacteristics,andshorterlifetimesascomparedtoothermoldmaterials.Thispaperpresentsmodelsoftheforcesgeneratedduringtheinjectionmoldingcyclesoastoevaluatethesuitabilityofrapidtools.Themodelscomprisethermalandmechanicalloadingduringinjection,coolingshrinkage,andejection.Theeffectsofprocessconditionsonmaterialpropertiesarestudied.Experimentalresultsarepresented.

Keywords:

rapidprototyping,injectionmold,failure

1INTRODUCTION

RapidToolingshowsgreatpromisefortheinjectionmoldingoflimitednumbersofparts,greatlyreducingthetimetoproduct,e.g.,[I-61.However,stereolithography(SL)rapidtoolingmaterials(typicallyepoxy-basedphotopolymers)presentchallengestodesignersbecausetheirstrengthandthermalcharacteristicsarenotasgoodastraditionalsteelmolds.Inaddition,longercycletimesarerequired.InsomecasesoutsidetheUSA,fillersareaddedtoincreasestrength,butmayinterferewithcure.SLinjectionmoldshavemuchshorterlifetimesthanothermoldmaterials,onereasonbeingthattheyareoperatedattemperaturesclosetotheirglasstransitions(Tg).Also,thestereolithographyprocessoflayeredmanufacturingandthedraftanglerequirementsgeneratestairsteppingonthesurfaceofthepart,whichincreaseejectionforcesandcanproducestressconcentrations.Thispaperpresentsmodelsoftheforcesgeneratedduringthemoldingcyclesoastoevaluatethesuitabilityofrapidtoolsforinjectionmolding.

Thematerialpropertiesoftherapidprototypingmoldmaterialsareevaluatedwithmechanicaltesting(tensileandflexural)anddynamicmechanicalanalysis(DMA)attemperaturessimilartothosepresentinthemoldduringinjectionmolding.MechanicaltestsshowthattheSLmoldingmaterialfailsinabrittlemanner,withlittleifanyfatiguebehavior.Somechangesinmechanicalpropertiesareobservedduetomechanicalandthermalcyclingofthemoldmaterials,eventhoughtheyarefullycuredduringprocessing,asevidencedbydifferentialscanningcalorimetry(DSC).Theseprovidetherequiredpropertiesforthecalculations.

Duringinjection,theflowofthepolymerintothemoldcavitycancausemoldfeaturestodeflectandbreak,particularlyafteranumberofcycleswhenthemoldhasheatedup.Theseforces,coupledwiththetemperaturedependentmoldproperties,aremodeledusingfiniteelementtechniquestodeterminetheextentofthemold

featuredeflectionorpossiblemoldfailure.Experimentsvalidatethesetheoreticalresults.

Duringcooling,aparttypicallywillshrinkontothecoreofamold.TheinherentstairstepgeometryoftheSLmoldismodeledsothatitsgeometrycanbedeterminedtheoretically.Bothofthesecontributionsareincorporatedintoanejectionforcemodel.Finiteelementtechniquesareusedtocalculatetheejectionforces.Experimentaldataforejectionforcesarepresented.

2THEORETICALMODELING

2.1InjectionPhase

Thefirstfeaturestudiedinthispaperisafree-standingribthatismodeledasacantileverbeam(Figure1)withalinearlydecreasingdistributedload(i.e.,higherloadatthefreeend),whichrepresentsloadingbytheincomingpolymerflow.Themaximummoldfeaturedeflection,y-,ispredictedusingafiniteelementmethodandtheelementaryequationforcantileverbeamdeflection(Equation1).Additionally,thestress,o,experiencedinsidethefeatureispredictedusingafiniteelementanalysisandtheelementaryflexureformula(Equation2).

wherePisapointloadattheendofthebeam,Lisitslength,Wisadistributedloadonthebeam,Eisthemodulus,Iisthesecondmomentofarea,Misthebendingmoment,andcisthehalfthicknessofthebeam.TheforcesandmomentactingonthecantileverbeamduetotheincomingpolymerflowarepredictedbyC-Mold,aninjectionmoldingsimulationprogram.ThedetailsofthefiniteelementanalysisarepresentedinSection2.3.Themoldfeatureispredictedtofailifthestressexceedsitsmaterial’smaximumflexuralstress.

2.2CoolingandEjectionPhases

Themodelforejectionforceisdevelopedbycombiningtheeffectsofthemajorcontributingfactors:

thethermalshrinkageandtheinherentstair-stepprofile(Figure2).

Mathematically,

Figure1:

Samplefeatureandcavitygeometry

whereFfric,thermandFdef,dalrdenotetheejectionforcecomponentsduetothermalshrinkageandtostair-stepping,respectively.Forageneralmoldwithacorefeature,themoldedpartcoolsdownandcontractsontothecore,creatingcontactpressureattheinterface.Thecontactpressuregeneratesfrictionduringejection,Ffric,therm,whichmustbeovercometomakeejectionpossible.Foramoldwithacorefeature,Ffric,thermcanbeestimatedusingathick-walledvesselapproximation[I].ThelayerednatureoftheSLprocessleadstothestair-stepphenomenondepictedinFigure2.Thisstair-stepprofilecreatestheundercutoroverlap6thatpreventsthemoldedpartfromejecting.Thestair-stepprofileispreservedthroughmultipleejectioncycles[2].Hence,thepartandmoldmustdeformelasticallytoovercometheoverlap(Fdef,stalr)inordertomakeejectionpossible.

InordertoformulateFdef,stalr,theoverlap6wasquantifiedmathematically.Toachievethisgoal,thestair-stepprofilewasmodeledusingtheequationofthehatchedbulletprofile[3].Thearithmeticaverageroughness(Ra),andconsequently,theoverlap6ofaSLtoolsurfacecanbeestimatedasfollows:

where0isthedraftangle,CL~isthelinewidthcompensationorbeamcompensation,Iisthebuildlayerthickness,andOCistheover-cure.CL~andOCdepend

onresintype,lasertype,andmachineset-up.BycombiningFfrlc,thermandFdef,stalr,theejectionforceequationbecomesthefollowing:

wherePthermisthecontactpressureduetothermalshrinkage,bqisanequivalentfrictioncoefficient,pisthefrictioncoefficientbetweenmoldandpartmaterials,SAisthecontactareaalongtheejectiondirection,ATisthechangeintemperaturefrominjectiontoejection,risthehydraulicradius=(2*area/perimeter),EisYoung'smodulus,visPoisson'sratio,andm,paresubscriptsdenotingmoldandpart,respectively.InregardstoATp,theYoung'smodulusofthepart'smaterialisonlysignificantattemperaturesbelowitsglasstemperatureTg,p.Therefore,thethermalstrainduetopartcooling

shouldbeincludedonlyafterthepartcoolsbelowTg,p.Inotherwords,ATp=Tg,p-Te,pwhereTe,pdenotestheejectiontemperatureofthepart.

2.3FiniteElementModelingandAnalysis

FEanalyseswereperformedtovalidatetheforceequations(Equations2and5)andtheexperimentalresults,andforuseasindependentmodelstopredictinjectionandejectionforcesforthecaseswheretheforceequationsmightbeinsufficient,e.g.,moldsoflargersizeormorecomplexgeometry.Acoupled-fieldsequentialtechniquewasemployedtoperformthermalanalysisandthesubsequentstructuralanalysisforthemold/partset.Forinjection,C-Moldwasusedtodeterminethethermalandpressurestates.ANSYSthenwasusedtodeterminethestressstate.Forejection,3-Dmodelingofthemold/partsetwasdoneusingProEandANSYS.ThermalanalysisthenwasperformedinANSYStoobtainthetransienttemperaturedistributionwithinthemold/partset.Thethermalresultswereusedasinputtothestructuralanalysistodeterminethestressstateatejection.Thecontactstressthenwasobtained.

3EXPERIMENTALPROCEDURES

3.1MaterialCharacterization

Experimentswereperformedtodeterminetheeffectofprocessconditionsonthemechanicalpropertiesoftwostereolithographyresins:

CibaTool7510andDSMSomos7110.DynamicMechanicalAnalysis(DMA)(singlecantilever35x12~2mm),compactdogbone(ASTMD638-94b:

typeII),andfracturetoughnessbend(ASTME399-90;thickness(B)of12mm)specimenswerebuiltinthreeorientations:

top,bottom,andside.Thesedesignationsrefertothelocationofthelayering(Figure2)onthepartresultingfromthebuildprocess.AfterbuildandonehourinanUVchamber,partswerepostcured

fortwohoursinathermalovenat8OoC.Samplesweretestedinanotfurtheragedcondition(NA);athermallyagedcondition(TA)-subjectedtosixmorehoursat8OoC;andamechanicallyagedcondition(MA)-subjectedto1000bendingcyclesof1mmamplitudeinaDMAat3OoC.Thelatterconditionssimulated,inamanner,theeffectsofprocessing.Amodel2890DMAfromTAInstrumentsandamodel4446universaltestingmachine(UTM)withtemperaturechambermodelA74fromlnstronwereusedforthetests.DMAtestswereperformedwitha3'C/minsweeprate,20pmdisplacement,and1HzfrequencytodetermineT,,E'(storagemodulus),andE"(lossmodulus).FatiguetestingalsowasperformedontheDMA.Itwasperformedfor300bendingcyclesof1mmamplitudeforthe7510resin,anduntilfailureforthe7110resin.TensiletestingwasperformedontheUTMat1.5mm/minwitha25mmgaugelengthandanextensometer.

3.2InjectionMoldingExperiments

Parts(Figures1and3)wereinjectionmoldedonaSumitomoinjectionmoldingmachine(SG75-CI60-Mlll)usingChevronMC3600polystyrene.Themoldswerebui

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学教育 > 语文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1