PUSHOVER分析.docx

上传人:b****6 文档编号:3232609 上传时间:2022-11-20 格式:DOCX 页数:12 大小:25.26KB
下载 相关 举报
PUSHOVER分析.docx_第1页
第1页 / 共12页
PUSHOVER分析.docx_第2页
第2页 / 共12页
PUSHOVER分析.docx_第3页
第3页 / 共12页
PUSHOVER分析.docx_第4页
第4页 / 共12页
PUSHOVER分析.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

PUSHOVER分析.docx

《PUSHOVER分析.docx》由会员分享,可在线阅读,更多相关《PUSHOVER分析.docx(12页珍藏版)》请在冰豆网上搜索。

PUSHOVER分析.docx

PUSHOVER分析

∙静力非线性(Pushover)分析

  静力非线性(包括pushover)分析是一个强有力的功能,仅提供在ETABS非线性版本中。

除了为基于抗震设计性能执行Pushover分析外,此功能还可用于执行常规静力非线性分析和分段式(增加)构造的分析。

  执行任何非线性将花费许多时间与耐性。

在执行静力非线性分析前,请仔细阅读下列全部信息。

要特别注意其中的重要事项。

  非线性

  静力非线性分析中可以考虑几类非线性特征。

  在框架/线单元中不连续的用户定义铰的材料非线性。

铰沿着任何框架单元长度指定到任何位置数上(参见线对象的框架非线性铰指定)。

非耦合弯矩、扭矩、轴力和剪力铰是有效的。

也有根据铰位置上的交互作用轴力和弯矩所屈服的耦合P-M2-M3铰。

在相同的位置可存在多于一种的铰类型。

例如,可以指定一个M3(弯矩)和一个V2(剪力)铰到框架单元的相同端部。

所提供的默认铰属性是基于ATC-40和FEMA-273标准的。

  在连接单元中材料的非线性。

有效非线性特征包括沿任何自由角度的缝隙(仅压力)、hook(仅张力)、单轴塑性,以及两种基本隔震器类型(双轴塑性和双轴磨擦/摆动)(参见线对象的连接属性指定)。

连接阻尼属性在静力非线性分析中没有效应。

  所有单元中的几何非线性。

可以选择仅考虑P-△效应或考虑P-△效应加上大位移(请参见几何非线性效应)。

大位移效应考虑变形配置的平衡,并允许用于大平移和旋转。

但是,每个单元中的应变被假设保留为小值。

  分段(顺序)施工。

在每个分析工况中,可按阶段施工顺序添加或删除构件(请参见静力非线性分段施工)。

  分析工况

  静力非线性分析可由任何数量的工况组成。

每个静力非线性工况在结构中可有不同的荷载分布。

例如:

典型静力非线性分析可由三种工况组成。

第一种为结构应用重力荷载,其次为在结构的高度上应用一个横向荷载分布,第三种将在结构高度上应用另一个横向荷载分布。

  静力非线性工况可从零初始状态开始,或从前一工况末的结果开始。

在前一例子中,重力工况将从零初始状态开始,两个横向工况可从重力工况末开始。

  每个分析工况可由多个施工阶段组成。

例如:

这可能在结构逐层施工中被用于重力分析工况。

  静力非线性分析工况完全独立于所有ETABS中其它的分析类型。

尤其是,任何为线性和动态分析执行的初始P-Δ分析在静力非线性分析工况中没有影响。

只有线性模态形状交互作用可在静力非线性工况中用于荷载。

  静力非线性分析工况可被用于设计。

通常把线性和非线性结果组合起来没有意义,所以可以被用于设计的静力非线性工况应包括所有的荷载、适当的尺度,它们可为设计检查进行组合。

  荷载

  应用在给定的静力非线性工况结构上的荷载分布,定义为下列的一个或多个项的成比例组合:

  任一静载工况。

  在三个全局方向的任一方向上的匀加速度作用。

在每个节点力对于从属此节点的质量是成比例的,并在指定的方向上产生作用。

  任何特征或瑞兹模态的一个模态荷载。

在每个节点的力与模态位移、模态角速度的平方(w2)以及从属此节点质量的乘积成比例,并在模态位移方向上作用。

  每个建筑构造方案的荷载组合是增加的,即如果是开始于前一个静力非线性工况,它是对已经在结构上作用的荷载的额外补充。

  在单一工况下的分段施工期间,当被添加时,所指定的荷载应用到每个阶段。

如果在分段施工期间一个单元被删除,则删除全部被此单元携带的荷载(包括来自于以前工况的荷载)。

  荷载控制

  应用荷载有两类明显不同的控制。

每个工况可使用一个不同的荷载控制类型。

选择通常根据荷载的物理性质与结构的预期性能:

  力控制。

应用全部指定的荷载组合。

当已知荷载(如重力荷载),且预期结构能够支承此荷载时,应当使用力控制。

分段施工需要力控制。

  位移控制。

结构中被监控的单一位移分量(或成对位移)是被控制的。

需要对荷载组合的数量增减,直到控制位移达到指定的数值为止。

当找到了指定的位移(如抗震荷载)时,此处应用的荷载量事先是不知道的,或当结构可预期失去强度或变成不稳定时,应使用位移控制。

位移控制不能用于分段施工。

  分析结果

  从静力非线性分析中可获得几种输出类型:

  基底反力和监控的位移可以被出图。

  沿Pushover曲线上每个点的基底反力vs监控的位移数值表格,连同超过其铰属性强制位移曲线上某些控制点的铰数量表格,可在屏幕上查看、打印或保存为文件。

  基底反力vs监控的位移可按ADRS格式出图,此处垂直轴是谱加速度,而水平轴是谱位移。

需要的谱可在出图上被重叠。

  将能力谱(ADRS能力与需求曲线)、有效周期与有效阻尼的数值制成表格,以在屏幕中进行查看、打印或保存为文件。

  铰排列的顺序与每个铰的色标状态可按图形方式进行查看,根据逐步原则,静力非线性工况可按步进行。

  构件力和应力也能以图形化方式进行查看,根据逐步原则,静力非线性工况可按步进行。

  所选构件的构件力和铰结果可写入为电子表格格式的文件,随后在电子数据表格程序中处理。

  所选构件的构件力和铰结果可写入到Access数据库格式的文件中。

  步骤

  下列常规步骤顺序涉及执行静力非线性分析:

  生成一个与任何其它分析一样的模型。

注意:

虽然其它单元类型可显示在模型中,但框架和连接单元限制为材料非线性。

  即便要定义静力荷载工况,也需要在静力非线性分析中使用(定义菜单>静力荷载工况命令进行访问)。

  定义任何框架单元的钢或混凝土设计所需的静力或动力分析工况。

  如需要定义铰属性,可通过定义菜单>框架非线性铰属性命令进行。

  如需要指定铰属性,可通过设定菜单>框架/线>非线性铰命令进行。

  如需要定义非线性连接属性,可通过定义菜单>连接属性命令进行。

  如需要铰连接属性指定到框架/线单元上,可通过设定菜单>框架/线>连接属性命令进行。

  运行基本线性和动态分析(通过分析菜单>运行命令进行)。

  如果任何混凝土铰属性是基于默认数值的,以便被程序所计算,用户就可执行混凝土设计,决定使用的钢筋。

  如果任何钢铰属性是基于默认数值的,以便被程序所计算,用户就可执行钢设计,程序决定使用合适的截面。

  对于分段施工,定义代表各完成施工阶段的组。

  定义静力非线性工况(定义菜单>静力非线性/Pushover工况命令进行)。

  运行静力非线性分析(分析菜单>运行静力非线性分析命令进行)。

  复查静力非线性结果(显示菜单>显示静力Pushover曲线命令)、(显示菜单>显示变形后形状命令)、(显示菜单>显示构件力/应力图命令)和(文件菜单>表格打印>分析输出命令)。

  执行任何利用静力非线性工况的设计检查。

  按需要修订模型并反复进行。

  重要事项

  进行非线性分析需要时间与耐心。

每个非线性问题都不一样。

预计您需要一定的时间来学会解决每个新问题的最佳方法。

  从简单开始,并逐步完善。

确保模型性能在线性荷载与模态分析下如所期望的那样。

宁可起始在预期为最大非线性域中逐步添加铰,也不在起始就到处使用铰。

使用不丢失主构件强度的铰模型开始;可在以后修改铰模型或重新设计结构。

  执行没有非线性几何形的初始分析。

添加P-Δ效应,最终很有可能导致大面积的破坏。

以适度目标位移和有限制的步骤数量开始。

在开始时,目标应是快速执行分析,以便可得到建模的体验。

当通过建模实践增长了信心,可更进一步地学习,并考虑到更极端的非线性状态。

  在数学上,静力非线性分析不总是保证有唯一的解决方案。

动态分析的惯性效应可遵循真实世界结构路径的限制。

但这不是真实的静力分析,尤其在由于材料或几何非线性造成失去强度的不稳定工况下。

  小规模改变属性或荷载可导致在非线性反应中大规模的改变。

由于这种原因,考虑许多不同的荷载工况是相当重要的,而且可在结构属性变化效果的敏感度进行研究。

  静力非线性工况数据

  对话框:

静力非线性工况数据

  访问静力非线性工况数据对话框,可使用定义菜单>静力非线性/Pushover工况命令,并点击添加新工况或修改/显示新工况按钮

  静力非线性工况数据对话框具有下列域:

  选项域

  力的控制通过勾选适当的复选框选择分析类型、控制的力或控制的位移:

  转到由模式定义的荷载水平。

勾选【转到由模式定义的荷载水平】复选框运行一个力控制分析。

该分析应用满荷载值,此满荷载值通过总计在【荷载曲线】框中指定的所有荷载而定义(除非它在一个较低的力值无法收敛)此选项对于应用到结构的重力荷载是有用的。

  注意:

当在此工况里面的阶段之间更改有效组,或此工况从一个先前的工况开始并且有效组在两个工况之间变化时,此选项【必须】用于阶段(增量)施工加载。

  转到位移.幅值勾选【转到位移幅值】复选框以进行一个位移-控制分析。

在对话框【荷载曲线】域中指定的荷载组合被应用,但是它的幅值按需要增加或减少以维持控制位移在幅值中增加。

对于应用横向荷载到结构,或者对于事先不知道应用荷载幅值的任何工况,或者能预期结构将丧失强度或变成不稳定时,此选项是有用的。

  检查目标【位移幅值】(即对应【转到Disp位移】复选框的编辑框中的数值),以及如果想要使用【共轭位移】作为控制(推荐),勾选该复选框。

如果不勾选此框,【监测位移】将用于控制。

  使用共扼位移用于控制

  共轭位移是一个被定义为与应用的荷载模式联合工作的广义位移量度。

它是结构中所有位移自由度的一个加权总和:

每个位移分量乘以在那个自由度的应用荷载,并总计结果。

  共轭位移通常是在一个给定的指定荷载下,对结构中最敏感位移的测量。

一般通常推荐用户使用共轭位移,除非用户能识别一个在分析期间单调增加的结构中位移。

  当用户使用共轭位移控制分析的时候,荷载增量被调整试图达到指定的监测位移。

然而,分析通常只会满足目标位移,特别是如果【监测位移】在共轭位移的一个不同方向上。

  监测

  通过选择位移自由度、输入标签并选择被监测点楼层可定义【监测位移】。

【监测位移】用于绘制pushover曲线以及当使用【转到位移幅值】选项时。

  【监测位移】在一个静力非线性分析期间,监测某个单一点时是一个单一位移分量。

当绘制pushover曲线时,程序总是使用监测的位移作为水平轴。

监测位移也用于决定何时该结束一个受控位移的分析。

  监测自由度和监测点位置是由ETABS给定的所有默认值;用户能容易地替换那些默认值。

监测点的默认值是位于结构顶的一个点。

默认监测自由度是UX;其他有效方向为UY,UZ,RX,RY,以及RZ.

  对于最有意义的pushover曲线,重要的是用户应选择一个对应用荷载模式敏感的监测位移。

例如,当荷载应用在方向UY上的时候,用户通常不应该监测自由度UX。

同样用户不应监测靠近约束的节点。

  当为了位移控制的目的选择一个监测位移时,也作相同的考虑。

选择一个对应用荷载敏感的位移,并且如果可能,是在分析期间单调增加的。

  用户可使用监测位移或共轭位移来作为位移控制,但使用监测位移的幅值来决定何时该结束一个受控位移的分析。

  当用户使用共轭位移控制分析的时候,荷载增量被调整试图达到指定的监测位移。

然而,分析通常只会满足目标位移,特别是如果【监测位移】在共轭位移的一个不同方向上。

  当【监测位移】达到指定的位移幅值时,分析结束。

(除非它在一个比较低的位移值收敛失败)

  【监测位移】的目标【位移幅值】由ETABS给定的一个为0.04默认值,乘以结构顶部的Z座标。

注意如果结构的基底具有一个大于零的Z座标,默认的位移可能相当大。

如果需要,用户可更改这个数值。

只使用【位移幅值】的绝对值:

荷载的方向由指定的荷载模式决定。

  注意:

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学教育 > 语文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1