示波器探头基础知识.docx
《示波器探头基础知识.docx》由会员分享,可在线阅读,更多相关《示波器探头基础知识.docx(20页珍藏版)》请在冰豆网上搜索。
示波器探头基础知识
作者:
聂文伟Oscilloscope.China@rohde-schwarz。
com,“ScopeArt先生”团队成员
示波器探头是示波器使用过程中不可或缺的一部分,它主要是作为承载信号传输的链路,将待测信号完整可靠的传输至示波器,以进一步进行测量分析。
很多工程师很看重示波器的选择,却容易忽略对示波器探头的甄别。
试想如果信号经过前端探头就已经失真,那再完美的示波器所测得的数据也会有误。
所以正确了解探头性能,有效规避探头使用误区对我们日常使用示波器来说至关重要!
在绝大多数示波器测量环境下,我们都需要使用探头.示波器探头有很多种,内部原理构造迥异,使用方法也各不相同。
本文主要给大家介绍示波器探头的种类及工作原理,探头使用过程注意事项以及如何选择示波器探头。
1示波器探头种类及工作原理
对于DC直流或一般低频信号而言,示波器探头只是一个由特定阻抗R所形成的一段传输线缆。
而随着待测信号频率的增加和不规则性,示波器探头在测量过程中会引入寄生电容C以及电感L,寄生电容会衰减信号的高频成分,使信号的上升沿变缓。
寄生电感则会与寄生电容一起构成谐振回路,使信号产生谐振现象.所有这些都会对我们测量信号的准确性带来挑战。
图1探头电气特性示意图
示波器探头按供电方式分可分为无源探头和有源探头。
无源探头又分为无源低压、无源高压及低阻传输线探头等,有源探头又分为有源单端、有源差分、高压差分探头等.此外,在一些特殊应用下,还会使用到电流探头(AC、DC)、近场探头、逻辑探头以及各类传感器(光、温度、振动)探头等。
无源探头是最常用的一类电压探头,也是我们在购买示波器时标配赠送的探头。
如图2所示。
图2无源探头示意图
无源探头一般使用通用型BNC接口与示波器相连,所以大多数厂家的无源探头可以在不同品牌的示波器上通用(某些厂家特殊接口标准的探头除外),但由于示波器一般无法自动识别其他品牌的探头类型,所以此时需要手动在示波器上设置探头衰减比,以保证示波器在测量时正确补偿探头带来的信号衰减.
图3所示为日常最为常见的一类无源探头原理示意图,它由输入阻抗Rprobe、寄生电容Cprobe、传输导线(一般1至1.5米左右)、可调补偿电容Ccomp组成。
此类无源探头一般输入阻抗为10MΩ,衰减比因子为10:
1.
图3无源探头原理图
在使用此类探头时,示波器的输入阻抗会自动设置为高阻1MΩ.此时示波器BNC通道输入点的电压Vscope与探头前端所探测的电压值Vprobe的关系满足以下对应关系:
Vprobe/Vscope=(9MΩ+1MΩ)/1MΩ=10:
1
由关系式可知,示波器得到的电压是探头探测到电压的十分之一,这也是无源探头10:
1衰减因子的由来.无源探头具备高阻抗10MΩ,因此它对待测电路的负载效应(将在第二部分详述)很小,能覆盖一般低频频段(500MHz以内),耐压能力强(300V-400Vrms),价格便宜,通用性好,所以得到广泛使用。
当无源探头的衰减因子为100:
1、1000:
1甚至更高时,此类探头一般归类为无源高压探头。
由于其衰减比很大,因此能测量高压、超高压电信号。
图4R&SRT—ZH10高压探头
还有一类无源探头,其衰减比为1:
1,信号未经衰减直接经过探头传输至示波器,其耐压能力不及其它无源探头,但它具备测试小信号的优势。
由于不像10:
1衰减比探头那样信号需要示波器再放大10倍显示,所以示波器内部噪声未放大,测量噪声更小,此类更适用于测试小信号或电源纹波噪声。
图5R&SHZ—1541:
1/10:
1可调衰减比无源探头
无源传输线探头是另一类特殊的无源探头,其特点是输入阻抗相对较低,一般为几百欧姆,支持带宽更高,可达数GHz以上.图6为输入阻抗为500Ω的10:
1无源传输线探头原理图:
图6传输线探头原理图
传输线探头具备低寄生电容,低输入阻抗的特性,一般用来测量高频信号。
在使用传输线探头时应该注意将示波器输入阻抗设置为50Ω,以与传输线50Ω阻抗相匹配,传输线探头的典型应用为测量50Ω传输线上的电信号,通过SMA-N等不同的转换接头,传输线探头也可用在频谱分析仪等其它测试设备上。
图7传输线探头的典型应用
需要注意的是,由于传输线探头的低阻抗,它的负载效应会比较明显。
因此,此类探头仅适用于与低输出阻抗(几十至100欧姆)的电路测试。
对于更高输出阻抗的电路,我们可以选择使用高阻有源探头的方案,将在后续详述。
图8R&SRT—ZZ808。
0GHz无源传输线探头
介绍完无源探头,我们接下来看看有源探头.顾名思义,有源探头区别于无源探头最大的特点是“有源”,即它需要提供电源才能工作。
如今大多数有源探头都配备有特殊接口,通过与示波器连接从示波器获得电源,而不需要额外提供外置电源(某些型号除外).下图所示为有源单端探头原理图:
图9有源单端探头原理图
有源单端探头一般具备高阻抗(1MΩ上下),低寄生电容.其前端有一个高带宽的放大器,有源探头的供电主要用于此放大器。
放大器驱动信号经过50Ω传输线到达示波器,示波器的输入阻抗需选择为50Ω作匹配。
由于其较低的寄生电容和50欧姆传输,有源单端探头可以提供比无源探头更高的带宽,因此主要应用在高频信号的测量领域。
优点和缺点往往是并存的,有源单端探头亦是如此。
能够测量更高带宽的信号是其优点,但由于需要集成有源放大器,因而其成本相对于无源探头来说更高,一个几GHz带宽的有源单端探头价格可达数万人民币.除此之外,由于高带宽放大器的信号输入范围十分有限,因而其动态范围有限,一般有源单端探头的动态范围仅在几伏范围之内,探头所能承受的最大电压也只有几十伏.
相对于前面所说的无源传输线探头,有源单端探头同样可以应用在低阻抗高频率信号的测量环境,且由于其输入阻抗相对于无源传输线探头更高,因此它的负载效应更小.不仅如此,R&S有源单端探头还可以与RT-ZA9(N型转换接头,USB供电)附件连接,进而用在射频信号源和频谱分析仪上,用来测试特殊环境下的信号,如传统50欧姆同轴线缆无法连接的探测点处,或者需要使用高阻探头探测待测点信号频谱时。
图10R&SRT—ZS系列单端有源探头与RT—ZA9N型转换头相连
除了有源单端探头之外,有源差分探头是另外一类重要的有源探头。
我们可以从字面上来理解这两种探头的区别,有源单端的前端有两处连接点:
信号点和地.有源差分顾名思义主要用来测试差分信号,探头前端有三处连接点:
信号正、信号负、地。
图11有源单端探头前端(左)与有源差分探头前端(右)
有源差分探头的原理图如下:
图12有源差分探头原理图
与有源单端探头相比,其最大不同在于使用了差分放大器。
有源差分探头同样具备低寄生电容和高带宽特性,所不同的是,有源差分探头具有高共模抑制比(CMRR),对共模噪声的抑制能力比较强。
有源差分探头主要用来测试差分信号,即测试两路信号(一般为相位相差180度的正反信号)的相对电压差,与地无关。
图13差分信号测试原理示意图
上图显示了用有源差分探头测试差分信号的原理,图中红色波形显示的为差分信号Vin+,蓝色波形显示为差分信号Vin—,二者幅度相同,相位相差180度。
Vin+和Vin-经由差分探头正、负探测点探测后经过差分放大器放大,然后传输至示波器,最后得到如图绿色差分波形.
这里要介绍几个概念,以便大家能够更好的理解共模抑制比CMRR。
共模(CommonMode):
差分信号两端具有相同幅度和相位的信号成分,用表达式表示为Vcm=(Vin++Vin-)/2.
由于理想的Vin+、Vin-幅度相同,相位相反,所以二者相加应该为零.但在实际工作环境下,Vin+、Vin—上会叠加上噪声干扰Vnoise。
由于Vin+、Vin—所处环境相同,因而在二者上叠加的噪声也往往相同,所以由CM表达式可知:
CM=Vnoise。
差模(DifferentialMode):
差分信号两端不同的信号成分,用表达式表示为Vdm=Vin+—Vin—。
共模抑制(CommonModeRejection):
差分放大器对共模信号的抑制能力,即差分放大器的一项主要能力是对Vnoise进行抑制消除.如果共模电压Vcm经过差分放大器的增益为Acm,差模电压Vdm经过差分放大器的增益为Adm,则我们可以用共模抑制比(CommonModeRejectionRatio)即CMRR来表示共模抑制能力,其表达式为:
CMRR=Adm/Acm
举例如下图:
差模信号Vdm幅度为1V,经过差分放大器后幅度为2V,即Adm=2。
共模信号Vcm幅度为4。
5V,经过差分放大器后幅度抑制为0.45V,即Acm=0。
1。
因此,CMRR= 2/0。
1=20:
1=26dB。
图14差分信号测试举例
对于理想的差分放大器而言,我们希望其完全抑制共模信号,从而消除噪声Vnoise对差分信号测量的影响。
对于一般的差分信号测量而言,20dB的CMRR已经足够,而R&SRT—ZD40的CMRR可达50dB,性能非常优异。
图15R&SRT—ZD40有源差分探头
值得一提的是,R&S的有源单端探头和有源差分探头上都配备了MicroButton多功能按钮和ProbeMeter探头计功能。
其中,MicroButton是位于有源探头前段的一个微型按钮,用户可以在测试时很方便的按动按钮,从而执行对示波器的特定控制(可自定义),如:
自动设置、默认设置、单次运行、连续运行等。
图16MicroButton多功能按钮
ProbeMeter则是集成在有源探头前端的16位DC电压计,可用来直接在探头点处测试直流电压,这与其他厂家使用探头捕获波形然后输送到示波器,进而对波形进行测量得到DC数值的方案完全不同。
很显然,ProbeMeter摒除了探头传输的失真影响,从而具备了0。
1%的高精准度。
在使用差分探头时,可以借助此功能方便快捷查看单端、共模、差模电压数值。
图17ProbeMeter探头电压计
有源差分探头可用于绝大多数较小幅度差分信号的测量,但对于幅度达上百甚至上千幅的高压差分信号而言,有源查分探头就显得力不从心了。
此时我们只能借助于高压差分探头的帮忙,相对于一般差分探头而言,高压差分探头具有更高的动态范围,能够承受更高的电压。
图18R&SRT-ZD01±1400V高压差分探头
高压差分探头相对于无源高压探头而言价格昂贵,因此有用户在测试高压差分信号时会选择将示波器的电源接地线剪断,使示波器“浮起来”进行测试,这是非常危险的,一定要杜绝此类行为.我们将在第二部分详细说明。
电流探头严格意义上说也属于有源探头的一种,几乎所有的电流探头在使用过程中都需要供电。
电流探头主要分为三类:
AC(仅能测试交流电)、DC(仅能测试直流电)、AC+DC.而目前大多数电流探头都具备了AC+DC的测量功能。
电流探头的原理如下,主要是利用电磁效应(AC测量)和霍尔效应(DC测量)。
图19AC+DC电流探头原理图
当有AC电流经过导线穿过电流探头的前段闭合钳口时,会有相应磁场产生,通过磁场的强弱直接感应到电流探头的线圈。
探头就象一个电流变压器,系统直接测量的是感应电流。
如果是DC或者低频电流,当电流钳闭合后,电流导线附近会出现一个磁场.磁场使霍尔传感器内的电子发生偏转,在霍尔传感器的输出产生一个电压。
系统根据这个电压产生一个反相(补偿)电流至电流探头的线圈,使电流钳中的磁场为零,防止磁饱和。
系统根据反相电流测得实际得电流值.
电流探头的选择主要依据其测量带宽、量程以及钳口直径等。
MSO数字逻辑探头在数字逻