《MOCVD精讲》PPT课件.ppt
《《MOCVD精讲》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《MOCVD精讲》PPT课件.ppt(58页珍藏版)》请在冰豆网上搜索。
MMetaletalOOrganicrganicCChemicalhemicalVVaporaporDDepositioneposition(MOCVD)(MOCVD)2021/3/2612021/3/262外延层的构造(c)松弛的异质外延层衬底层外延层未形变的(b)形变的衬底层外延层形变的(a)晶格匹配的外延层衬底层晶格匹配同质外延的结构和晶格匹配的异质外延层相同2021/3/263外延的基本物理过程1.表面成核表面成核对外延材料结构有最大影响的阶段是生长的最初阶段,这个阶段叫成核。
当衬底表面只吸附少量生长物原子时,这些原子是不稳定的,很容易挣脱衬底原子的吸引,离开衬底表面。
所以,要想在衬底表面实现外延材料的生长,首先由欲生长材料的原子(或分子)形成原子团,然后这些原子团不断吸收新的原子加入而逐渐长大成晶核。
它们再进一步相互结合形成连续的单晶薄层。
2021/3/264成核与生长过程示意图2021/3/2652.表面动力学反应物到衬底后,通常发生下列过程:
反应物扩散到衬底表面;反应物吸附到衬底表面;表面过程(化学反应、迁移及并入晶格等;反应附加产物从表面脱附;附加产物扩散离开表面。
每个步骤都有特定的激活能,因此,在不同外延温度下对生长速率的影响不同。
2021/3/266表面过程l如果不考虑生长速率,仅从外延质量来看上述过程表面过程非常重要。
l沉积到衬底表面上的原子通常去寻找合适的位置落入,使得系统的总能量降至最低。
对于实际表面,像表面台阶之类的表面缺陷是原子并入晶格的最佳位置。
(见下图)2021/3/2672021/3/268生长机制l对于表面上存在许多淀积原子的情况,它们除了在表面处键合外,还相互结合以进一步减少自由键的数目。
外来的淀积原子不断加入小的原子群并形成大的聚集体。
显然,当这些原子团继续生长时,它们自己就被看作是提供高结合能位置的表面缺陷,在淀积过程中进一步聚集原子生长。
2021/3/269岛状生长模式(Volmer-Weber模式)层状生长模式(Frank-VanderMerwe模式)层状-岛状生长模式(Stranski-Krastanov模式)2021/3/26101、岛状生长、岛状生长(Volmer-Weber)模式模式:
l被沉积物质的原子或分子更倾向于自己相互键被沉积物质的原子或分子更倾向于自己相互键合起来,而避免与衬底原子键合,即被沉积物合起来,而避免与衬底原子键合,即被沉积物质与衬底之间的浸润性较差;金属在非金属衬质与衬底之间的浸润性较差;金属在非金属衬底上生长大都采取这种模式。
对很多薄膜与衬底上生长大都采取这种模式。
对很多薄膜与衬底的组合来说,只要沉积温度足够高,沉积的底的组合来说,只要沉积温度足够高,沉积的原子具有一定的扩散能力,薄膜的生长就表现原子具有一定的扩散能力,薄膜的生长就表现为岛状生长模式。
为岛状生长模式。
2021/3/26112、层状生长(、层状生长(Frank-vanderMerwe)模式:
模式:
l当被沉积物质与衬底之间浸润性很好时,被沉当被沉积物质与衬底之间浸润性很好时,被沉积物质的原子更倾向于与衬底原子键合。
因此,积物质的原子更倾向于与衬底原子键合。
因此,薄膜从形核阶段开始即采取二维扩展模式,沿薄膜从形核阶段开始即采取二维扩展模式,沿衬底表面铺开。
在随后的过程中薄膜生长将一衬底表面铺开。
在随后的过程中薄膜生长将一直保持这种层状生长模式。
直保持这种层状生长模式。
2021/3/26123、层状、层状-岛状岛状(Stranski-Krastanov)生长模式:
生长模式:
l在层状在层状-岛状中间生长模式中,在最开始一两岛状中间生长模式中,在最开始一两个原子层厚度的层状生长之后,生长模式转个原子层厚度的层状生长之后,生长模式转化为岛状模式。
导致这种模式转变的物理机化为岛状模式。
导致这种模式转变的物理机制比较复杂,但根本的原因应该可以归结为制比较复杂,但根本的原因应该可以归结为薄膜生长过程中各种能量的相互消长。
薄膜生长过程中各种能量的相互消长。
2021/3/2613三种不同薄膜生长模式的示意图:
三种不同薄膜生长模式的示意图:
2021/3/2614导致生长模式转变的三种物理机制导致生长模式转变的三种物理机制1、虽虽然然开开始始时时的的生生长长是是外外延延式式的的层层状状生生长长,但但是是由由于于薄薄膜膜与与衬衬底底之之间间晶晶格格常常数数不不匹匹配配,因因而而随随着着沉沉积积原原子子层层的的增增加加,应应变变能能(应应力力)逐逐渐渐增增加加。
为为了了松松弛弛这这部部分分能能量量,薄薄膜膜在在生生长长到到一一定定厚厚度度之之后后,生生长长模模式式转转化化为为岛状模式。
岛状模式。
2、在在层层状状外外延延生生长长表表面面是是表表面面能能比比较较高高的的晶晶面面时时,为为了了降降低低表表面面能能,薄薄膜膜力力图图将将暴暴露露的的晶晶面面改改变变为为低低能能面面,因因此此薄薄膜膜在在生生长长到到一一定定厚厚度度之之后后,生生长长模模式式会会由由层层状状模式向岛状模式转变。
模式向岛状模式转变。
2021/3/2615注注:
在在上上述述三三种种模模式式转转换换机机理理中中,开开始始的的时时候候层层状状生生长长的的自自由由能能较较低低;但但其其后后,岛岛状状生生长长的的自自由由能能变变低低了了,岛岛状状生生长长反反而而变变得得更更有有利利了。
了。
2021/3/26162021/3/2617l化学气相沉积乃是通过化学反应的方式,利用加热、等离子激励或光辐射等各种能源,在反应器内使气态或蒸汽状态的化学物质在气相或气固界面上经化学反应形成固态沉积物的技术。
l简单来说就是:
两种或两种以上的气态原材料导入到一个反应室内,然后他们相互之间发生化学反应,形成一种新的材料,沉积到基片表面上。
l从气相中析出的固体的形态主要有下列几种:
在固体表面上生成薄膜、晶须和晶粒,在气体中生成粒子。
化学气相沉积法化学气相沉积法(CVD)2021/3/2618CVD技术的基本要求为适应CVD技术的需要,选择原料、产物及反应类型等通常应满足以下几点基本要求:
l
(1)反应剂在室温或不太高的温度下最好是气态或有较高的蒸气压而易于挥发成蒸汽的液态或固态物质,且有很高的纯度;l
(2)通过沉积反应易于生成所需要的材料沉积物,而其他副产物均易挥发而留在气相排出或易于分离;l(3)反应易于控制。
2021/3/2619气体入口气体入口气体出口气体出口感应加热线圈感应加热线圈衬底衬底倾斜角倾斜角CVD装置装置(卧式卧式)2021/3/2620硅片硅片气体入口气体入口气体出口气体出口CVD装置装置(立式立式)2021/3/26212.CVD技术的热动力学原理技术的热动力学原理化学气相沉积的五个主要的机构(a)反应物已扩散通过界面边界层;(b)反应物吸附在基片的表面;(c)化学沉积反应发生;(d)部分生成物已扩散通过界面边界层;(e)生成物与反应物进入主气流里,并离开系统2021/3/2622所谓边界层,就是流体及物体表面因流速、浓度、温度差距所形成的中间过渡范围。
上图显示一个典型的CVD反应的反应结构分解。
首先,参与反应的反应气体,将从反应器的主气流里,借着反应气体在主气流及基片表面间的浓度差,以扩散的方式,经过边界层传递到基片的表面,这些达到基片的表面的反应气体分子,有一部分将被吸附在基片的表面图(b)。
当参与反应的反应物在表面相会后,借着基片表面所提供的能量,沉积反应的动作将发生,这包括前面所提及的化学反应,及产生的生成物在基片表面的运动(及表面迁移),将从基片的表面上吸解,并进入边界层,最后流入主体气流里,如图(d)。
这些参与反应的反应物及生成物,将一起被CVD设备里的抽气装置或真空系统所抽离,如图(e)。
2021/3/2623l以化学工程的角度来看,任何流体的传递或输送现象,都会涉及到热能的传递、动量的传递及质量的传递等三大传递现象。
l
(1)热热量量传传递递热能的传递主要有三种方式:
传导、对流及辐射。
因为CVD的沉积反应通常需要较高的温度,因此能量传递的情形,也会影响CVD反应的表现,尤其是沉积薄膜的均匀性输送现象输送现象2021/3/2624l热传导是固体中热传递的主要方式,是将基片置于经加热的晶座上面,借着能量在热导体间的传导,来达到基片加热的目的,如图所示。
以这种方式进行的热能传递,可以下式表示。
l单位面积的能量传递=l其中:
kc为基片的热传导系数,T为基片与加热器表面间的温度差,X则近似于基片的厚度。
2021/3/2625l物体因自身温度而具有向外发射能量的本领,这种热传递的方式叫做热辐射。
热辐射能不依靠媒介把热量直接从一个系统传到另一个系统。
但严格的讲起来,这种方式基本上是辐射与传导一并使用的方法,如下图。
辐射热源先以辐射的方式将晶座加热,然后再由热的传导,将热能传给置于晶座上的基片,以便进行CVD的化学反应。
下式是辐射能的传导方程式。
单位面积的能量辐射=Er=hr(Ts1-Ts2)l其中:
hr为“辐射热传系数”;Ts1与Ts2则分别为辐射热原及被辐射物体表面的温度。
2021/3/2626以热辐射为主的加热2021/3/2627l对流是第三种常见的传热方式,流体通过自身各部的宏观流动实现热量传递的过程。
它主要是借着流体的流动而产生。
l依不同的流体流动方式,对流可以区分为强制对流及自然对流两种。
l前者是当流体因内部的“压力梯度”而形成的流动所产生的;后者则是来自流体因温度或浓度所产生的密度差所导致的。
l单位面积的能量对流=Ecov=hc(Ts1-Ts2)l其中:
hc即为“对流热传系数”2021/3/2628l下图显示两种常见的流体流动的形式。
其中流速与流向均平顺者称为“层流”;而另一种于流动过程中产生扰动等不均匀现象的流动形式,则称为“湍流”。
l在流体力学上,人们习惯以所谓的“雷诺数”,来作为流体以何种方式进行流动的评估依据。
它估算的方式如下式所示l其中d微流体流经的管径,为流体的密度,为流体的流速,而则为流体的粘度。
(2)动量传递动量传递2021/3/2629两种常见的流体流动形式l基本上,CVD工艺并不希望反应气体以湍流的形式流动,因为湍流会扬起反应室内的微粒或微尘,使沉积薄膜的品质受到影响。
2021/3/2630l假设流体在晶座及基片表面的流速为零,则流体及基片(或晶座)表面将有一个流速梯度存在在,这个区域便是边界层。
边界层的厚度,与反应器的设计及流体的流速有关,而可以写为:
l以“雷诺数”来表示,可改写为l式中,x为流体在固体表顺着流动方向移动得距离面。
2021/3/2631l也就是说,当流体流经一固体表面时,下图的主气流与固体表面(或基片)之间将有一个流速从零增到0的过渡区域存在,即边界层。
l这个边界层的厚度,与雷诺数倒数的平方根成正比,且随着流体在固体表面的移动而展开,如下图所示。
lCVD反应所需要的反应气体,便必须通过这个边界层以达到基片的表面。
而且,反应的生成气体或未反应的反应物,也必须通过边界层已进入主气流内,以便随着主气流经CVD的抽气系统而排出。
2021/3/2632CVD反应物从主气流里往基片表面扩散时反应物在边界层两端所形成的浓度梯度2021/3/2633(3)质量的传递)质量的传递l如上所述,反应气体或生成物通过边界层,是以扩散的方式来进行的,而使气体分子进行扩散的驱动力,则是来自于气体分子局部的浓度梯度。
2021/3/2634CVD技术的分类CVD技术根据反应类型或者压力可分为技术根据反应类型或者压力可分为低压CVD(LPCVD)常压CVD(APCVD)亚常压CVD(SACVD)超高真空CVD(UHCVD)等离子体增强CVD(PECVD)高密度等离子体CVD(HDPCVD)快热CVD(RTCVD)金属有机物CVD(MOCVD)CVD技术2021/3/2635金属有机气相淀积(MOCVD)l金属有机化学气相沉积(MOCVD)是从早已熟知的化学气相沉积(CVD)发展起来的一种新的表面技术。
是一种利用低温下易分解和挥发的金属有机化合物作为源物质进行化学气相沉积的方法,主要利用化合物半导体气相生长方面。
l在MOCVD过程中,金属有机源(MO源)可以在热解或光解作用下,在较低温度沉积出相应的各种无机材料,如金属、氧化物、氮化物、氟化物、碳化物和化合物半导体材料等的薄膜。
2021/3/26362021/3/2637SomeaboutthenameofMOCVDInthereference,MOCVDalsohavesomeothernames.Differentpeoplepreferdifferentname.Allthenamesrefertothesamegrowthmethod.MOCVD(Metalorganicchemicalvapordeposition)OMCVD(OrganometallicCVD)MOVPE(MOvaporphaseepitaxy)OMVPEAP-MOCVD(AtmosphereMOCVD)LP-MOCVD(LowpressureMOCVD)2021/3/26382021/3/2639MOCVD设备2021/3/26402021/3/26412021/3/26422021/3/2643SchematicsofaMOCVDsystemSchematicsofaMOCVDsystem2021/3/2644GashandlingsystemGashandlingsysteml气体处理系统的功能是混合与测量进入反应室的气体处理系统的功能是混合与测量进入反应室的气体。
调节进入反应室气体的速率与成分将决定气体。
调节进入反应室气体的速率与成分将决定外延层的结构。
外延层的结构。
l气路的密封性至关重要,因为氧气的污染会降低气路的密封性至关重要,因为氧气的污染会降低所生长薄膜的性能。
所生长薄膜的性能。
l阀门的快速转换对薄膜和突变界面结构的生长很阀门的快速转换对薄膜和突变界面结构的生长很重要。
重要。
l流速,压强和温度的精确控制能保证生长薄膜的流速,压强和温度的精确控制能保证生长薄膜的稳定性和可重复性。
稳定性和可重复性。
2021/3/2645CarriergasCarriergasl惰性气体占所携气体的惰性气体占所携气体的90%严格的纯度要求。
严格的纯度要求。
l一般用一般用H2,可通过一个加热至,可通过一个加热至400OC的钯箔轻易的钯箔轻易的净化。
问题:
的净化。
问题:
H2遇到遇到O2很轻易爆炸。
很轻易爆炸。
highsafetycosts.l替代气体:
替代气体:
N2更安全,纯度相似,在裂化前驱体更安全,纯度相似,在裂化前驱体分子中更为有效(更重)。
分子中更为有效(更重)。
l调节调节:
流量控制器流量控制器lP5-800mbar2021/3/2646MaterialsourcesMaterialsourcesl挥发性前驱体分子由携带气体传送。
挥发性前驱体分子由携带气体传送。
lIII-V族半导体的生长族半导体的生长:
lIII族元素族元素:
通常是金属有机分子通常是金属有机分子。
lV族元素族元素:
通常是氢化物剧毒气体通常是氢化物剧毒气体(AsH3;PH3也也是可燃气体是可燃气体);替代物替代物:
烷基物烷基物(TBAs,TBP).2021/3/2647VaporpressureofmostcommonMOcompoundsCompoundPat298K(torr)ABMeltpoint(oC)(Al(CH3)3)2TMAl14.2278010.4815Al(C2H5)3TEAl0.041362510.78-52.5Ga(CH3)3TMGa23818258.50-15.8Ga(C2H5)3TEGa4.7925309.19-82.5In(CH3)3TMIn1.7528309.7488In(C2H5)3TEIn0.3128158.94-32Zn(C2H5)2DEZn8.5321908.28-28Mg(C5H5)2Cp2Mg0.05355610.56175Logp(torr)=B-A/T2021/3/2648ExhaustsystemExhaustsysteml泵和压强控制器泵和压强控制器l低压生长:
机械泵和压强控制器低压生长:
机械泵和压强控制器控制生长气压。
控制生长气压。
泵应该能处理较大的气体流量。
泵应该能处理较大的气体流量。
l废气处理系统废气处理系统l废气的处理是涉及安全到问题。
废气的处理是涉及安全到问题。
lGaAs和和InP:
剧毒原材料如剧毒原材料如AsH3和和PH3.废气中废气中仍然留有部分未反应的仍然留有部分未反应的AsH3和和PH3,通常这些剧通常这些剧毒废气应用化学的方法处理掉。
毒废气应用化学的方法处理掉。
l对于对于GaN,这就不是问题了。
这就不是问题了。
2021/3/2649SafetyissuesSafetyissueslConcerns:
lFlammablegases(H2)lToxicgases(AsH3,PH3)l安全措施安全措施:
l大量的监测系统放在不同位置,能监测到非常微小大量的监测系统放在不同位置,能监测到非常微小的漏的漏气。
气。
l在建筑物各个地方安置警报器在建筑物各个地方安置警报器+报警器指向操作员。
报警器指向操作员。
l在漏气及其它严重的故障时能立即关闭系统至安全状态。
在漏气及其它严重的故障时能立即关闭系统至安全状态。
l替代方法替代方法:
用可替代的气体用可替代的气体lN2carrierlTBAs,TBP(toxicbutliquidlowvaoprpressure)2021/3/26502021/3/26512021/3/2652MOCVDMOCVD的特点的特点2021/3/26532021/3/26542021/3/2655MOCVDvs.MBEMBEMainlyusefulforresearchlabexperiments.Notefficientformassproduction!
MOCVDUsefulforlabexperiments&formassproduction!
MANYMILLIONSOF$FORBOTH!
2021/3/26562021/3/2657祝各位身体健康、工作顺利、家祝各位身体健康、工作顺利、家庭幸福。
庭幸福。
2021/3/2658