Sachdev, Quantum Phase Transitions, 2ed, Springer, 2011[1].pdf
《Sachdev, Quantum Phase Transitions, 2ed, Springer, 2011[1].pdf》由会员分享,可在线阅读,更多相关《Sachdev, Quantum Phase Transitions, 2ed, Springer, 2011[1].pdf(521页珍藏版)》请在冰豆网上搜索。
ThispageintentionallyleftblankQuantumPhaseTransitionsSecondEditionThisisthefirstbooktodescribethephysicalpropertiesofquantummaterialsnearcriticalpointswithlong-rangemany-bodyquantumentanglement.Readersareintroducedtothebasictheoryofquantumphases,theirphasetransitions,andtheirobservableproperties.Thissecondeditionbeginswithninechapters,sixofthemnew,suitableforanintroduc-torycourseonquantumphasetransitions,assumingnopriorknowledgeofquantumfieldtheory.Thereareseveralnewchapterscoveringimportantrecentadvances,suchastheFermigasnearunitarity,Diracfermions,Fermiliquidsandtheirphasetransitions,quan-tummagnetism,andsolvablemodelsobtainedfromstringtheory.Afterintroducingthebasictheory,itmovesontoadetaileddescriptionofthecanonicalquantum-criticalphasediagramatnonzerotemperatures.Finally,avarietyofmorecomplexmodelsisexplored.Thisbookisidealforgraduatestudentsandresearchersincondensedmatterphysicsandparticleandstringtheory.SubirSachdevisProfessorofPhysicsatHarvardUniversityandholdsaDistinguishedResearchChairatthePerimeterInstituteforTheoreticalPhysics.Hisresearchhasfocusedonavarietyofquantummaterials,andespeciallyontheirquantumphasetransitions.QuantumPhaseTransitionsSecondEditiontSUBIRSACHDEVHarvardUniversityCAMBRIDGEUNIVERSITYPRESSCambridge,NewYork,Melbourne,Madrid,CapeTown,Singapore,SoPaulo,Delhi,TokyoCambridgeUniversityPressTheEdinburghBuilding,CambridgeCB28RU,UKPublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYorkwww.cambridge.orgInformationonthistitle:
www.cambridge.org/9780521514682c?
S.Sachdev2011Thispublicationisincopyright.Subjecttostatutoryexceptionandtotheprovisionsofrelevantcollectivelicensingagreements,noreproductionofanypartmaytakeplacewithoutthewrittenpermissionofCambridgeUniversityPress.Firstpublished2011PrintedintheUnitedKingdomattheUniversityPress,CambridgeAcatalogrecordforthispublicationisavailablefromtheBritishLibraryLibraryofCongressCataloging-in-PublicationDataSachdev,Subir,1961-Quantumphasetransitions/SubirSachdev.Secondedition.p.cmIncludesbibliographicalreferencesandindex.ISBN978-0-521-51468-2(Hardback)1.Phasetransformations(Statisticalphysics)2.Quantumtheory.I.Title.QC175.16.P5S232011530.4?
74dc222010050328ISBN978-0-521-51468-2HardbackCambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyofURLsforexternalorthird-partyinternetwebsitesreferredtointhispublication,anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain,accurateorappropriate.TomyparentsandMenaka,Monisha,andUshaContentsFromthePrefacetothefirsteditionpagexiiiPrefacetothesecondeditionxviiPartIIntroduction11Basicconcepts31.1Whatisaquantumphasetransition?
31.2Nonzerotemperaturetransitionsandcrossovers51.3Experimentalexamples81.4Theoreticalmodels91.4.1QuantumIsingmodel101.4.2Quantumrotormodel121.4.3Physicalrealizationsofquantumrotors142Overview182.1Quantumfieldtheories212.2Whatsdifferentaboutquantumtransitions?
24PartIIAfirstcourse273Classicalphasetransitions293.1Mean-fieldtheory303.2Landautheory333.3Fluctuationsandperturbationtheory343.3.1Gaussianintegrals363.3.2Expansionforsusceptibility39Exercises424Therenormalizationgroup454.1Gaussiantheory464.2MomentumshellRG484.3Fieldrenormalization534.4Correlationfunctions54Exercises56viiviiiContents5ThequantumIsingmodel585.1EffectiveHamiltonianmethod585.2Large-gexpansion595.2.1One-particlestates605.2.2Two-particlestates615.3Small-gexpansion645.3.1d=2645.3.2d=1665.4Review675.5TheclassicalIsingchain675.5.1Thescalinglimit705.5.2Universality715.5.3Mappingtoaquantummodel:
Isingspininatransversefield725.6MappingofthequantumIsingchaintoaclassicalIsingmodel74Exercises776Thequantumrotormodel796.1Large-gexpansion796.2Small-gexpansion806.3TheclassicalXYchainandanO
(2)quantumrotor826.4TheclassicalHeisenbergchainandanO(3)quantumrotor886.5Mappingtoclassicalfieldtheories896.6Spectrumofquantumfieldtheory906.6.1Paramagnet916.6.2Quantumcriticalpoint926.6.3Magneticorder92Exercises957Correlations,susceptibilities,andthequantumcriticalpoint967.1Spectralrepresentation977.1.1Structurefactor987.1.2Linearresponse997.2Correlationsacrossthequantumcriticalpoint1017.2.1Paramagnet1017.2.2Quantumcriticalpoint1037.2.3Magneticorder104Exercises1078Brokensymmetries1088.1Discretesymmetryandsurfacetension1088.2Continuoussymmetryandthehelicitymodulus1108.2.1Orderparametercorrelations112ixContents8.3TheLondonequationandthesuperfluiddensity1128.3.1Therotormodel115Exercises1159BosonHubbardmodel1179.1Mean-fieldtheory1199.2Coherentstatepathintegral1239.2.1Bosoncoherentstates1259.3Continuumquantumfieldtheories126Exercises130PartIIINonzerotemperatures13310TheIsingchaininatransversefield13510.1Exactspectrum13710.2Continuumtheoryandscalingtransformations14010.3Equal-timecorrelationsoftheorderparameter14610.4Finitetemperaturecrossovers14910.4.1LowTonthemagneticallyorderedside,?
0,T?
15110.4.2LowTonthequantumparamagneticside,?
gc17511.2.2Criticalpoint,g=gc17711.2.3Magneticallyorderedgroundstate,ggc,T?
+18611.3.2HighT,T?
+,?
18611.3.3LowTonthemagneticallyorderedside,ggc,T?
18711.4Numericalstudies18812Thed=1,O(N3)rotormodels19012.1Scalinganalysisatzerotemperature19212.2Low-temperaturelimitofthecontinuumtheory,T?
+19312.3High-temperaturelimitofthecontinuumtheory,?
+?
T?
J199xContents12.3.1Field-theoreticrenormalizationgroup20112.3.2Computationofu20512.3.3Dynamics20612.4Summary21113Thed=2,O(N3)rotormodels21313.1LowTonthemagneticallyorderedside,T?
s21513.1.1Computationofc21613.1.2Computationof22013.1.3Structureofcorrelations22213.2Dynamicsofthequantumparamagneticandhigh-Tregions22513.2.1Zerotemperature22713.2.2Nonzerotemperatures23113.3Summary23414Physicsclosetoandabovetheupper-criticaldimension23714.1Zerotemperature23914.1.1Tricriticalcrossovers23914.1.2Field-theoreticrenormalizationgroup24014.2Staticsatnonzerotemperatures24214.2.1d324814.3Orderparameterdynamicsind=225014.4Applicationsandextensions25715Transportind=226015.1Perturbationtheory26415.1.1I26815.1.2II26915.2Collisionlesstransportequations26915.3Collision-dominatedtransport27315.3.1?
expansion27315.3.2Large-Nlimit27915.4Physicalinterpretation28115.5TheAdS/CFTcorrespondence28315.5.1Exactresultsforquantumcriticaltransport28515.5.2Implications28815.6Applicationsandextensions289PartIVOthermodels29116DiluteFermiandBosegases29316.1ThequantumXXmodel296xiContents16.2ThedilutespinlessFermigas29816.2.1Diluteclassicalgas,kBT?
|,030116.2.3High-Tlimit,kBT?
|30416.3ThediluteBosegas30516.3.1dgcandforggc(g0.Itturnsoutthatworkingoutwardfromthequantumcriticalpointatg=gcandT=0isapowerfulwayofunderstandinganddescribingthethermodynamicanddynamicpropertiesofnumeroussystemsoverabroadrangeofvaluesof|ggc|andT.Indeed,itisnotevennecessarythatthesystemofinteresteverhaveitsmicroscopiccouplingsreachavaluesuchthatg=gc:
itcanstillbeveryusefultoarguethatthereisaquantumcriticalpointataphysicallyinaccessiblecouplingg=gcandtodevelopadescriptioninthedeviation|ggc|.Itisoneofthepurposesofthisbooktodescribethephysicalperspectivethatsuchanapproachoffers,andtocontrastitwithmoreconventionalexpansionsaboutveryweak(sayg0)orverystrongcouplings(sayg).1.2NonzerotemperaturetransitionsandcrossoversLetusnowdiscusssomebasicaspectsoftheT0phasediagram.First,letusaskonlyaboutthepresenceofphasetransitionsatnonzeroT.Withthislimitedcriterion,therearetwoimportantpossibilitiesfortheT0phasediagramofasystemnearaquantumcriticalpoint.TheseareshowninFig.1.2,andwewillmeetexamplesofbothkindsinthisbook.Inthefirst,showninFig.1.2a,thethermodynamicsingularityispresentonlyatT=0,andallT0propertiesareanalyticasafunctionofgnearg=gc.Inthesecond,showningT0T0gcgcg(a)(b)tFig.1.2Twopossiblephasediagramsofasystemnearaquantumphasetransition.Inbothcasesthereisaquantumcriticalpointatg=gcandT=0.In(b),thereisalineofT0second-orderphasetransitionsterminatingatthequantumcriticalpoint.Thetheoryofphasetransitionsinclassicalsystemsdrivenbythermalfluctuationscanbeappliedwithintheshadedregionof(b).6BasicconceptsFig.1.2b,thereisalineofT0second-orderphasetransitions(thisisalineatwhichthethermodynamicfreeenergyisnotanalytic)thatterminatesattheT=0quantumcriticalpointatg=gc.Movingbeyondphasetransitions,letusasksomebasicquestionsaboutthedynamicsofthesystem.AverygeneralwaytocharacterizethedynamicsatT0isintermsofthethermalequilibrationtimeeq.Thisisthecharacteristictimeinwhichlocalthermalequi-libriumisestablishedafterimpositionofaweakexternalperturbation(say,aheatpulse).Hereweareexcludingequilibrationwithrespecttogloballyconservedquantities(suchasenergyorcharge)whichwilltakealongtimetoequilibrate,dependentuponthelengthscaleoftheperturbation:
hencetheemphasisonlocalequilibration.Globalequilibrationisdescribedbytheequationsofhydrodynamics,andweexpectsuchequationstoapplyinallcasesattimesmuchlargerthaneq.WefocushereonthevalueofeqasafunctionofggcandT.FromtheenergyscalesdiscussedinSection1.1,wecanimmediatelydrawanimportantdistinctionbetweentworegimesofthephasediagram.Wecharacter-izedthegroundstatebytheenergy?
in(1.1).Atnonzerotemperature,wehaveasecondenergyscale,kBT.Comparingthevaluesof?
andkBT,weareimmediatelyledtotheimportantphasediagramin