隧道监控量测实施方案.docx

上传人:b****5 文档编号:30739154 上传时间:2023-08-20 格式:DOCX 页数:81 大小:3.78MB
下载 相关 举报
隧道监控量测实施方案.docx_第1页
第1页 / 共81页
隧道监控量测实施方案.docx_第2页
第2页 / 共81页
隧道监控量测实施方案.docx_第3页
第3页 / 共81页
隧道监控量测实施方案.docx_第4页
第4页 / 共81页
隧道监控量测实施方案.docx_第5页
第5页 / 共81页
点击查看更多>>
下载资源
资源描述

隧道监控量测实施方案.docx

《隧道监控量测实施方案.docx》由会员分享,可在线阅读,更多相关《隧道监控量测实施方案.docx(81页珍藏版)》请在冰豆网上搜索。

隧道监控量测实施方案.docx

隧道监控量测实施方案

 

隧道监控量测实施方案

1、编制依据

为了及时了解掌握隧道施工过程中围岩的稳定状态和支护、衬砌的可靠程度,确保施工安全及隧道结构的长期稳定性,在隧道施工过程中,及时为隧道围岩级别变更、初期支护和二次衬砌的参数调整提供依据,为施工决策管理服务,实现信息化施工管理。

铁路隧道监控量测技术规程(Q/CR9218-2015);

铁路隧道施工技术指南;

关于进一步明确软弱围岩及不良地质铁路隧道设计施工、有关技术规定的通知》(铁建设〔2010〕120号);

中国铁路总公司工程管理中心关于印发《铁路隧道监控量测标准化管理实施意见》的通知(工管办函〔2014〕92号);

拉林铁路建设总指挥部关于印发《拉林铁路隧道施工监控量测管理细则》的通知(拉林指工管〔2015〕48号);

新建铁路川藏线拉萨至林芝段LLZQ12标设计图纸,并结合本标段工程特点编制本方案。

2、工程概况及工程地质条件

2.1、工程概况

新建铁路川藏线拉萨至林芝段LLZQ-12标段正线全长53.015km,共计隧道6座,分别为米林隧道、罗布琼则隧道,觉官坝一号隧道、觉官坝二号隧道、色苏隧道、卓木隧道,隧道总长18751延长米。

重点控制隧道:

卓木隧道,总长6845延长米;米林隧道,总长5586延长米。

2.2、地质概况

2.2.1米林隧道

米林隧道全长11560m,隧区位于念青唐古拉山与喜马拉雅山之间的藏南谷地高山区,山高谷深,气候极端恶劣。

山脉呈南北纵贯延伸,谷岭相间,地势起伏跌宕。

区内山势雄伟,测区内高点位于隧道轴线左侧山脉,标高为4230m;最低点位于隧道出口宽谷地点,标高为2940m。

隧道纵断面标高范围为:

2965~3076m。

隧道进、出口有乡村公路相通,交通较为方便。

最大埋深为1200m。

隧址区范围内覆盖层主要为第四系全新统坡残积层(Q4al)的细砂、全新统滑坡对基层(Q4del)的碎石土及上更新统冰水堆积层(Q3fgl)的卵石土。

下覆基岩为新元古-中元古界念青唐古拉岩群八拉岩组(pt2-3b)片麻岩、糜棱岩及碳酸盐块(Ca),地层情况如下:

<3-4>碎石土(Q4del)

<3-4-2>碎石土(Q4dl+el)

<4-4>细砂(Q4al+el)

<6-5>块石土(Q4dl+col)

<8-4>细砂(Q4fgl)

<8-9>卵石土、碎石土(Q3fgl)

<8-10>漂石土(Q3fgl)

<23-1>片麻岩(pt2-3b)

<23-1-1>糜棱岩(pt2-3b)

<23-1-3>碳酸盐岩块(Ca)

2.2.2罗布琼则隧道

罗布琼则隧道全长1750m,测区位于念青唐古拉山与喜马拉雅山之间的藏南谷地高山区,山高谷深,气候极端恶劣。

山脉呈南北纵贯延伸,谷岭相间,地势起伏跌宕。

区内山势雄伟,测区内高点位于隧道轴线左侧山脉,标高为3120m;最低点位于隧道出口斜坡地带,标高为2950m。

隧道纵断面标高范围为:

2950~3120m。

隧道进、出口有乡村公路相通,交通较为方便。

最大埋深为1200m。

测区范围内覆盖层主要为第四系全新统坡残积层(Q4dl+el)的粉土、细、粗角砾土、第四系全新统冲积层(Q4al)的粉土、细砂、细、粗圆(角)砾土、卵(碎)石土及上漂石土。

下覆基岩为新元古-中元古界念青唐古拉岩群八拉岩组片麻岩(pt2-3b)。

地层情况如下:

<3-2-1>粉土(Q4dl+el)

<3-3>细角砾土(Q4dl+el)

<3-3-1>粗角砾土(Q4dl+el)

<4-3-1>粉土(Q4al)

<4-4>细砂(Q4al)

<4-6-1-4>砾砂(Q4al)

<4-8>粗圆(角)砾土(Q4al)

<4-9>卵(碎)石土(Q4al)

<4-10-4>漂石土(Q4al)

<23-1>片麻岩(pt2-3b)

2.2.3觉官坝一号隧道

觉官坝一号隧道全长2290m,测区位于念青唐古拉山与喜马拉雅山之间的藏南谷地高山区,山高谷深,气候极端恶劣。

测区内高点位于隧道轴线左侧山脉,高程为4500m;最低点位于隧道右侧宽谷地带,高程为2920m。

隧道纵断面标高范围为:

2951.012m~2957.252m。

隧道进、出口位于西藏林芝地区米林县扎绕乡境内,进口段地形相对平缓,植被不发育,多为小型灌木,在线位右侧有岗米公路通过,路宽约为5米左右,出口段植被一般,多为灌木丛,洞口下方有一乡村便道通过,宽约2m,交通方便。

测区范围内覆盖层主要为第四系全新统风积层(Q4col)粉砂、坡残积层(Q4dl+el)的粉土、粗角砾土、泥石流堆积层(Q4gel)粉土、碎石土、块石土;上更新统洪冲积成(Q3al)的粉土、粉、细砂。

下覆基岩为新元古-中元古界念青唐古拉岩群八拉岩组(pt2-3b)靡棱岩。

地层分述如下:

<2-2-1>粉砂(Q4col)

<3-2-1>粉土(Q4dl+el)

<3-3-1>粗角砾土(Q4dl+el)

<5-3-1>粉土(Q4gel)

<5-3-2>细砂(Q4gel)

<5-5>粗角砾土(Q4gel)

<5-6>碎石土(Q4gel)

<5-7>块石土(Q4gel)

<7-3-1>粉土(Q3al)

<7-4>细砂(Q3al)

<23-1-1>靡麻岩(pt2-3b)

2.2.4觉官坝二号隧道

觉官坝二号隧道全长932m,测址区位于念青唐古拉山与喜马拉雅山之间的藏南谷地高山区,山高谷深,气候极端恶劣。

山脉呈南北纵贯延伸,谷岭相间,地势起伏跌宕。

区内山势雄伟,测区内高点位于隧道轴线左侧山脉,高程为4500m;最低点位于隧道右侧宽谷地带,高程为2920m。

隧道纵断面标高范围为:

2951.012m~2957.252m。

隧道进、出口有乡村公路相通,交通较为方便。

最大埋深为1200m。

测区范围内覆盖层主要为第四系全新统冲积层(Q4al)的粉土、细砂、细圆(角)砾土、粗圆(角)砾土、第四系全新统坡残积层(Q4dl+el)的角砾土及堆积成因(Q4dl)的粉土、细、粗、角砾土及块石土。

下覆基岩为新元古-中元古界念青唐古拉岩群八拉岩组片麻岩(pt2-3b)及雅鲁藏布江缝合带之朗县混杂岩组(KL)砂质板岩夹片岩。

地层情况如下:

<3-2-1>粉土(Q4dl+el及Q4dl)

<3-3>细角砾土(Q4dl+el及Q4dl)

<3-3-1>粗角砾土(Q4dl+el及Q4dl)

<3-5>块石土(Q4dl+el及Q4dl)

<4-3-1>粉土(Q4al)

<4-4>细砂(Q4al)

<4-7>细圆砾土(Q4al)

<4-8>粗圆砾土(Q4al)

<4-9>卵(碎)石土(Q4al)

<4-10-3>块石土(Q4al)

<23-1>片麻岩(pt2-3b)

<27-1>砂质板岩夹片岩(KL)

2.2.5色苏隧道

色苏隧道全长1348m米,隧址区位于念青唐古拉山与喜马拉雅山之间的藏南谷地高山区,山高谷深,气候极端恶劣。

山脉呈南北向纵贯延展,谷岭相间,地势起伏跌宕。

区内山势雄伟,测区内高点位于隧道轴线左侧山脉,标高约为4500m;最低点位于隧道右侧宽谷地带,标高为2920m。

隧道纵断面标高范围为:

2959.652m~2963.192m。

最大埋深约182.5m,隧道进、出口有公路相通,交通较方便。

测区范围内覆盖层主要为第四系全新统冲积层的粉土、细砂、细、粗圆(角)砾土、卵(碎)石土、块石土;第四系全新统坡残积层的粉土。

下覆基岩为白垩系辉长岩、变质辉长岩、辉长堆晶岩;中生界白垩系朗线混杂岩砂质板岩夹片岩。

地层情况如下:

<3-2-1>粉土(Q4dl+el)

<4-3-1>粉土(Q4al)

<4-4>细砂(Q4al)

<4-7>细圆(角)砾土(Q4al)

<4-8>粗圆(角)砾土(Q4al)

<4-9>卵(碎)石土(Q4al)

<4-10-4>块石土(Q4al)

<13-3>辉长岩(K2V)

<27-1>砂质板岩夹片岩(KL)

2.2.6卓木隧道

卓木隧道全长6845米,隧区位于念青唐古拉山与喜马拉雅山之间的藏南谷地高山区,山高谷深,气候极端恶劣,山脉呈南北向纵贯延展,谷岭相间,地势起伏跌宕。

区内山势雄伟,测区内高点位于隧道轴线左侧山脉,标高为4400m;最低点位于隧道进、出口宽谷雅江地带,标高为2920m。

隧道纵断面标高范围为:

2944.311m~2952.261m。

隧道进、出口与公路相通,交通较方便,最大埋深为830m。

测区范围内覆盖层主要为第四系全新统坡残积层(Q4dl+el)的粉土、细、粗角砾土等;第四系全新统冲积层(Q4al)的粉土、细砂、细、粗圆(角)砾土、卵(碎)石土等。

下覆基岩为新远古-中远古界念青唐古拉岩群八拉岩组(Pt2-3b)片麻岩、早白垩系(K1γδ)花岗闪长岩、(ρ)伟晶岩脉底层情况如下:

<3-2-1>粉土(Q4dl+el)

<3-3>细角砾土(Q4dl+el)

<3-3-1>粗角砾土(Q4dl+el)

<4-3-1>粉土(Q4al)

<4-4>细砂(Q4al)

<4-7>细圆(角)砾土(Q4al)

<4-8>粗圆(角)砾土(Q4al)

<4-9>卵(碎)石土(Q4al)

<23-1-1>麋棱岩(Pt2-3b)

<23-1>片麻岩(Pt2-3b)

<15-1>花岗闪长岩(K1γδ)

<16-1>伟晶岩脉(ρ)

3、监控量测的目的

监控量测是检验设计、施工是否合理和围岩、结构是否安全稳定的重要手段,它始终伴随着施工的全过程,是保证施工安全、指导施工作业的重要环节之一,应作为关键工序列入现场施工组织。

3.1、隧道施工监控量测的目的

保证隧道暗挖和明挖结构的稳定和施工安全。

根据量测结果,分析可能发生危险的征兆,判断工程的安全状况,采取措施,遏制危险的趋势,确保施工及周边环境的安全。

以施工量测的结果指导现场施工,进行信息化反馈优化设计,使设计更切合实际,安全合理,有利施工。

将现场量测的结果与理论预测值相比较,修正设计参数,为优化设计提供依据。

通过量测结果的信息反馈,了解施工方法和施工手段的科学性,以便及时调整施工方法,保证施工安全,提高经济效益。

通过量测了解支护结构的受力和变形情况,对其安全及稳定性进行评价。

提供判断围岩和初期支护基本稳定的依据,确定二次衬砌的施作时间。

通过量测积累数据来判定其受施工影响的程度,以决定对其采取的保护措施。

为以后设计、施工积累经验。

4、监控量测的意义

随着我国交通的迅速发展,通过这些隧道工程实践,推动了隧道工程技术的发展,促进了科学技术的进步,新技术在隧道施工过程中已被广泛采用,同时取得了很好的效果。

但是我们还应该看到我们取得的成绩还不够,还不能适应隧道工程发展的需要,与世界先进国家相比我们的技术水平还较低。

在以后的工程建设中还需进行深入的研究和科技攻关。

监控量测作为隧道施工的三大核心之一,可为评价施工方法的可行性、设计参数的合理性以及了解围岩及支护结构的受力和变形特性等提供准确及时的依据,对隧道二次衬砌的施作时间具有决定性意义,因此,它是保障隧道建设成功的关键因素。

在隧道施工中,监控量测工作必不可少,必须按照有关规定进行地质素描、隧道周边位移收敛和拱顶下沉等必测项目以及其它一些选测项目的量测工作。

通过隧道开挖目测围岩地质状况和实测的有关变位信息,为判断隧道空间的稳定性提供可靠的依据;利用量测信息的反馈,修改设计、指导施工;根据量测结果,提供围岩收敛趋势情况,判断围岩的稳定性与安全性,提供施工建议,以便采取措施防患于未然;根据变位速度判断隧道围岩稳定程度,并为二次衬砌提供合理的支护时机,从而确保工程质量与施工安全。

监控量测的主要任务是确保安全、指导施工、修正设计、积累资料,其可以及时提供拱顶下沉、周边收敛信息,判断设计参数的合理性,提出更加恰当的施工方法和合理的支护措施,实现隧道信息化动态施工控制,达到既能安全快速施工,又能节省工程造价的目的。

5、监控量测管理机构、人员及设备要求

5.1、管理机构、人员配置

在铁路总公司拉林铁路建设总指挥部的指挥下,监理单位的监督下,根据隧道风险等级和管理要求,项目部成立隧道监控量测管理领导小组,由项目部精测队负责实施。

组长:

罗振平;

副组长:

黄云、马明齐、刘胜巍、王玉、张帆、陈彦武、李明、杜德一;

组员(监控量测小组):

项目部精测队:

马明齐、赵强,信息化专员为赵强;

第一测量组:

闫海龙、赵刚、宁高磊,信息化专员为赵刚;

第二测量组:

白忠诚、赵旭光、舒川洪,信息化专员为赵旭光;

第三测量组:

魏晓武、李惠想、罗林,信息化专员为李惠想。

领导小组设在项目部,精测队对口管理监控量测工作;工程部、安质部、分部经理和总工,负责对重大异常情况的施工方案进行研究。

各分部成立现场监控量测小组,负责监控量测工作的具体实施,及时埋设观测标,进行观测,数据处理完成及时反馈现场,指导施工作业。

5.2、职责

⑴领导小组组长、副组长职责

配备专业监控量测人员和符合要求的仪器设备,建立健全监控量测质量安全保证体系。

对监控量测数据的真实性和准确性负责。

根据设计要求,编制监控量测实施方案(细则),经项目部总工程师审核后报监理、建设单位审批后实施;编制监控量测管理办法,并抓好具体落实。

按批准的实施方案组织实施,及时对监测数据进行统计分析。

根据揭示的地质情况,及时调整监控量测方案。

配合监理对现场监控量测的检查和复核工作。

根据预警等级对现场情况进行处理。

⑵组员(监控量测小组)职责

成立现场监控量测工作小组,配备有相应资质和能力的专业人员和符合要求的仪器设备,保证网络覆盖、监测仪器、传输工具、客户端管理等硬件配置的到位与正常使用。

依照监控量测规范和实施方案认真开展量测工作,负责督促分部、架子队进行测点埋设、数据采集、数据分析和安全评价等工作,对监控量测数据的真实性和准确性负责。

编制月度监控量测工作计划,按计划开展监控量测工作。

负责在实施监控量测工作前,通知现场监理人员实施监理,并填写监控量测日志表,详细记录监控量测实施时各部位里程位置,工况环境及地质简明情况。

负责在规定时间内完成数据采集和上传,在每个掌子面完成量测后实时上网传输,根据软件分析结果,对工程安全性提出评价意见。

专人负责终端机管理,专机专用,终端机不得进行其他工作。

建立管理台账和周报、月报分析制度,结合地质情况分析监控量测数据的变化规律,预警后采取工程措施的效果,对施工安全进行评价。

每日测量工作结束数据上传服务器后,立即运用软件对当日数据进行处理分析,并打印日报表,报送分部工程部,在洞口公示牌张贴监控量测日报。

每周、月将监控量测资料整理齐全并按要求编制周报、月报,报项目部、监理站。

5.3、监控量测设备管理

各分部根据量测工作的需要,及时提供设备计划,组织采购。

加强各个小组量测仪器、设备的管理,定期进行标定,并建立健全仪器设备台帐。

按照仪器使用管理规定,进行量测仪器的使用和管理,确保仪器精度满足要求。

投入主要仪器设备表

名称

型号

精度

单位

数量

生产厂家

徕卡全站仪

TS06

2″

11

瑞士徕卡

徕卡电子水准仪

DNA03

0.5mm

11

瑞士徕卡

数显收敛仪

JSS30A

0.1mm

11

杭州三思

水准尺

钢尺

1mm

11

钢卷尺

50M

1mm

11

6、监控量测项目和频率

6.1、监测项目

监测项目是隧道工程应进行的日常监控量测项目,是为了在设计施工中确保围岩稳定、判断支护结构工作状态、指导设计施工的经常性量测。

必测项目在以上6座隧道施工中均需进行,选测项目根据实际施工过程中需要增设,具体内容如下:

监测项目

序号

监控量测项目

常用量测仪器

备注

1

洞内、外观察

现场观察、数码相机

2

拱顶下沉

全站仪、收敛仪

3

净空变化

全站仪、收敛仪

4

地表下沉

全站仪、水准仪

洞口及隧道浅埋段

5

拱底(底板)隆起

全站仪、水准仪

软岩大变形

6.2、量测频率

监控量测频率根据监测数据的变化情况而定,一般每断面量测频率和周期见下表

按距开挖面距离确定的监测频率

监测断面距开挖面距离(m)

监测频率

(0~1)B

2次/d

(1~2)B

1次/d

(2~5)B

1次/2~3d

>5B

1次/7d

注:

B—隧道开挖宽度。

按位移速率确定的监测频率

位移速率(mm/d)

监测频率

≥5

2次/d

1~5

1次/d

0.5~1

1次/2~3d

0.2~0.5

1次/3d

<0.2

1次/7d

7、监控量测方案

7.1、监控量测的基本要求

成立相应的机构组织,配备专业人员和设备,掌握成熟、可靠地数据处理与分析技术。

根据设计要求或隧道规模、地形、地质条件、支护类型和参数、施工方法等,编制《监控量测实施方案》,经监理、建设单位批准后严格实施。

将现场监控量测作为工序引入作业循环,并结合地质预报做出评价,优化设计参数,实施动态管理。

监控量测元件的埋设与监控量测应列入工程施工进度控制计划中,监控量测工作应尽量减少对施工工序的影响。

监控量测工作必须紧接开挖、支护作业、埋点数量、位置、时间应符合设计或规范规定,并根据现场情况及时进行调整或增加量测的项目和内容。

测点应牢固,挂牌标示。

施工过程中应加强资料收集与整理工作,工程竣工后,监控量测资料要纳入竣工文件。

施工现场必须建立严格的监控量测数据复核、审查制度,保证数据的准确性。

监控量测数据应利用计算机系统进行管理,由专人负责。

如有监控量测数据缺失或异常,应及时采取补救措施,并详细记录。

7.2、监控量测的主要内容

根据工程特点、规模大小和设计要求综合选定隧道监控量测的项目。

量测项目一般分为必测项目和选测项目两大类。

7.2.1必测项目包括:

洞内外观察;②净空变化;③拱顶下沉;④地表下沉;⑤软岩大变形隧道拱底(底板)隆起。

监控量测必测项目

序号

监测项目

测试方法和仪表

测试精度

备注

1

洞内、外观察

现场观察、地质罗盘等

--

2

衬砌前、后净空变化量测

隧道净空变化测定仪(收敛仪、全站仪)

0.1mm

一般进行水平收敛量测

3

拱顶下沉

水准测量的方法,精密水准仪、钢尺等

0.5~1mm

4

地表沉降

水准测量的方法,精密水准仪、钢挂尺

0.5~1mm

隧道浅埋段

5

拱底(底板)隆起

水准测量的方法,精密水准仪、钢挂尺

0.5~1mm

软岩大变形

注:

H0—隧道埋深;B—隧道最大开挖宽度。

7.2.2选测项目包括:

⑴钢架内力及外力;⑵围岩体内位移(洞内设点);

⑶围岩体内位移(地表设点);⑷围岩压力;

⑸两层支护间压力;⑹锚杆轴力;

⑺支护、次衬砌内力;⑻围岩弹性波速度;

⑼渗水压力、水流量;⑽地表下沉;

监控量测选测项目

序号

监控量测项目

测试方法和仪表

测试精度

备注

1

钢架内力及外力

振弦式钢筋计、应变计

0.1MPa

2

围岩体内位移(洞内设点)

多点位移计

0.1mm

3

围岩体内位移(地表设点)

地面钻孔中安设位移计

0.1mm

4

围岩压力

压力盒

0.01MPa

5

两层支护间压力

压力盒

0.01MPa

6

锚杆轴力

钢筋计、锚杆测力计

0.01MPa

7

支护、次衬砌内力

振弦式传感器

0.01MPa

8

爆破振动

测振及配套传感器

--

临近建筑物

9

渗水压力、水流量

水压计、流量计

0.01MPa

10

地表下沉

水准仪、铟钢尺

0.5~1mm

洞口段

注:

H0—隧道埋深;b—隧道最大开挖宽度。

7.2.3隧道地质及支护状况变化情况观察

工作要求:

观察工作面状态、围岩变形、围岩风化变质情况、节理裂隙、断层分布和形态、地下水情况以及喷射混凝土的效果。

观察后应绘制开挖工作面略图(地质素描),填写开挖工作面地质状况记录表。

对已施工区段的观察也应每天至少进行一次,观察内容包括喷射混凝土、锚杆、钢架的状况。

7.3、洞口段地表沉降监测

7.3.1监测仪器

精密水准仪、钢尺等。

7.3.2监测实施方法

测点布置如示意图。

沉降变形观测点沿建筑角点、拐点布置,或沿建筑边墙线布置。

地表沉降测点横向间距为2~5m,在隧道中线附近测点应适当加密。

洞口地表下沉观测点布置示意图

测量方法:

观测方法采用精密水准测量方法。

基准点和附近水准点联测取得初始高程。

观测时各项限差宜严格控制,每测点读数高差不宜超过0.3mm,对不在水准路线上的观测点,一个测站不宜超过3个,超过时应重读后视点读数,以作核对。

首次观测应对测点进行连续两次观测,两次高程之差应小于±1.0mm,取平均值作为初始值。

7.3.3沉降值计算

在条件许可的情况下,尽可能的布设导线网,以便进行平差处理,提高观测精度,然后按照测站进行平差,求得各点高程。

施工前,由基点通过水准测量测出隆陷观测点的初始高程h,在施工过程中测出的高程为H。

则高差△H=H-h即为沉降值。

7.3.4监测频率

对于暗挖隧道施工,当开挖面与量测面距离<1B时(B为隧道最大开挖宽度),2次/天;当开挖面与量测面距离1~2B时,1次/天;当开挖面与量测面距离2~5B时,1次/2~3天;当开挖面与量测面距离>5B时,1次/7天。

7.3.5数据分析与处理

地表沉降量测随施工进度进行,根据开挖部位、步骤及时监测,并将各沉降测点沉降值绘制成沉降变化曲线图、沉降变化速度图、加速度曲线图。

7.4、隧道净空位移及拱顶下沉量测

在进行隧道洞室开挖施工过程中,拱顶下沉及周边收敛量测在同一断面进行,并采用相同的量测频率,如位移出现异常情况,应加大量测频率。

其量测的频率应根据位移速度和量测断面距离开挖面距离确定。

7.4.1工作要求

隧道量测断面的围岩收敛情况包括量测拱顶下沉、净空水平位移。

各测点应在避免爆破作业破坏的前提下,尽可能靠近工作面埋设,一般为0.5~2.0m,并在下一次爆破循环前获得初始读数。

初读数应在开挖后12h内读取,最迟不得超过24h,而且在下一循环开挖前,必须完成初期变形值的读数。

净空水平收敛测线的布置应根据施工方法、地质条件、量测断面所在位置、隧道埋置深度等条件确定。

在地质条件良好,采用全断面开挖方式时,可设一条水平测线;当采用台阶开挖方式时,设一条水平测线、两条斜测线。

拱顶下沉量测应与净空水平收敛量测在同一量测断面内进行。

当采用全断面开挖时,可将测得的净空垂直位移来代替拱顶下沉量测。

斜测线的设置有助于了解垂直方向的变化情况。

净空位移量测的测线布置数量可参照下表。

净空变化量量测线数

地段

开挖方法

一般地段

特殊地段

全断面法

一条水平测线

台阶法

每台阶一条水平测线

每台阶一条水平测线,两条斜测线

7.4.2测量原理及方法

⑴净空水平收敛量测

收敛值是指已知两测点间在某一时间段内距离的改变量。

设t1时刻观察值为R1,t2时刻观测值为R2,则收敛值u=R1-R2,此值除以时间差t=t2-t1,即为收敛速度,必须指出,前后两次观测时的量测方法相同,即收敛计悬挂方向相同,钢带尺张紧力调整过程相同,这样可以消除仪器悬挂,调整张力等系统读数,以利提高量测精度。

全断面开挖时,通过测a线来判断水平收敛情况;上下台阶开挖时,下台阶开挖时,要增测d线,以确保下台阶施工的安全。

⑵拱顶下沉量测

①监测目的

拱顶下沉监测值是反映地下工程结构安全和稳定的重要数据,是围岩与支护系统力学形态变化的最直接、最

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学教育 > 语文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1