Finite Element Analysis Report for Drying Raw Mill new.docx

上传人:b****5 文档编号:30692614 上传时间:2023-08-19 格式:DOCX 页数:13 大小:688.12KB
下载 相关 举报
Finite Element Analysis Report for Drying Raw Mill new.docx_第1页
第1页 / 共13页
Finite Element Analysis Report for Drying Raw Mill new.docx_第2页
第2页 / 共13页
Finite Element Analysis Report for Drying Raw Mill new.docx_第3页
第3页 / 共13页
Finite Element Analysis Report for Drying Raw Mill new.docx_第4页
第4页 / 共13页
Finite Element Analysis Report for Drying Raw Mill new.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

Finite Element Analysis Report for Drying Raw Mill new.docx

《Finite Element Analysis Report for Drying Raw Mill new.docx》由会员分享,可在线阅读,更多相关《Finite Element Analysis Report for Drying Raw Mill new.docx(13页珍藏版)》请在冰豆网上搜索。

Finite Element Analysis Report for Drying Raw Mill new.docx

FiniteElementAnalysisReportforDryingRawMillnew

FiniteElementAnalysisReportforDryingRawMill

1.Introduction

ThemaincomponentsanddimensionsofthemillCBMIdesignedareshowninfigure1.Themainshellisacylindricalvesselwith4.6minsidediameterby15.1mlonganddividedintofourchambersbythreediaphragms.OnemanholeisinchamberIandtheothermanholeisinchamberⅣ.Thetwoholesare180apart.Thedrivingtubeisacylindricalshellwith1.8minsidediameterbyabout2.832mlong,perforatedby6holes.Themainshellanddrivingtubearejointedbyboltswhicharesimulatedbyconstraintequation,whichmeanstakingthedrivingtubeandshellasawhole.Themillissupportedbyfour0.6mwidebearingpadsateachend.Theshellincontactwithbearingpadsarethickento100mmandaxiallydrivenatoutletendflangewithanormaloperatingpowerof3000kwat15rpm.Allotherdimensionsarereferredtorelevantengineeringdrawings.Figure2showsthelocalmagnifyingofthemanhole1.Figure3showslocalmagnifyingoftheholeofdischargedchamber3.

Figure1.FEmodelshowingmaincomponentsanddimensions

Figure2.localmagnifyingofthemanhole1

Figure3.localmagnifyingoftheholeofdischargedchamber3

2.Boundaryconditions

3-Dstructureelementandquadraticshellelementareusedtomodelthemill.

2.1Drivingtorqueandoffsetload

AdrivingtorqueT=1910000N.mwhichcorrespondstoabout3000kwat15rpmisappliedbycircumferentialforcesonendflange.Aloadof200736.3kginternalballsandmaterialisappliedasadditionalmassonbottompartofmainshellandoffsettotheleftasillustratedinfigure4.TheangularpositionsofAandBareapproximately-1800and-600respectively,foundbytrialanderrorsoastocounterbalancetheappliedadditionalmass.

Figure4.Drivingtorqueandoffsetload

Figure5Modelof8supportpads

2.2Linermasses

7559kgforheadlineratinletend,7942kgforheadlineratoutletend,14782.56kgforshelllinerinchamberI,38088kgforshelllinerinchamberⅡ,10760kgforshelllinerinchamberⅢ,22954kgforshelllinerinchamberⅣareappliedasadditionaldistributedmassofcorrespondingcomponents(headplatesandmainshell).

2.3Diaphragm

16402kgweightfordiaphragmbetweenchamberIandⅡ,8201kgweightforthetwodiaphragmsrespectivelyindischargedchamberⅢ,alltheweightsareappliedasdistributedmassofanannularplateusingverysmallYoung'smodulussothatthediaphragmdoesnotcontributetothestiffnessoftheshell.

2.4Drivingtubeandshellmasses

12399kgfordrivingtube(SeedrawingNO.BMRaCD46.3.7),122683kgforshell(SeedrawingNO.BMRaCD4685/35.3.4),alloftheweightswillbecalculatedbydefiningdenseofthematerialthroughANSYSsystem,andultimatelyappliedtothemodel.

2.5Support

Thecontactmodelisintroducedtosimulatethefrictionlesscontactbetweenshellringsandthe200mmthicksupportpads.Radialreactionsillustrateinfigure5.

Totally,12modelsarestudied,eachoneforeveryhourpositioninaccordingtothepositionofpads,andonlyimportantandcriticalresultsarereportedbelow.

3.Resultanalysis

3.1Resultsforforcesandstressesonpads

Asillustratedinfigure5andthroughcontactmodelsimulation,

=551380,

=592676,

=666763N,

=964697N,

=581772N,

=557564N,

=581077N,

=948661N,finallytheverticalreactiontotallyequalsto4697300N(about479.36tons).

With0.2mthickplatesforpads,themaximumVonMisesstressis7.57MPa(figure6).Foranyotherthicknessofpads,byfunction

=

inMPaandtinmeter,basedonthefactthatbendingstressinplatesisinverselyproportionaltothesquareofitsthickness(

=

).Usingtheyieldstrength185MPaofthepadsmaterialandsafetyfactor2,thefunctiongivesthethicknessofpadsis57mm.

Figure6ThemaximumVonMisesstressinpads

Padshaveasafetyfactorgreaterthan2whiletheyarestrongerthan57mmthickplate.

3.2Maximumstressindrivingtube

Asillustratedinfigure7,"TheVonMisesstressdistributionofdrivingtube"showsthemaximumVonMisesstressis17.6MPa.Consideringthestartuptorque2.5timesgreater,thenthesafetyfactoragainstyieldis200/17.6/2.5=4.54.Figure8showsthemaximumVonMisesstressofdrivingtubehole,whichis4.17MPa,muchsmallerthanthematerialbreakagelimit.

Figure7TheVonMisesstressdistributionofdrivingtube

Figure8TheVonMisesstressdistributionofdrivingtubehole

3.3stressanalysisofmanholes

3.3.1VonMisesstressaroundmanhole

Formanhole1,themaximumstaticVonMisesstressis66.7MPaat4hposition(seeFig9);formanhole2,themaximumstaticVonMisesstressis79.4MPaat4hposition(seeFig10);thesafetyfactorwithrespecttoyieldisf=250/79.4=3.15

Fig9MaximumVonMisesStressaroundmanhole1

Fig10MaximumVonMisesStressaroundmanhole2

3.3.2Fatiguestressaroundmanhole

Formanhole1,theworstprincipalstressrangeoccursontheedgeofshellbetween

maxat4h=68.4Mpaand

minat7h=-12.9Mpa(Fig11-12).Thus,stressrange=68.4-(12.9)=81.3Mpa.SafetyfactorwithrespecttoallowableinfinitelifecategoryAstressaccordingtoAISC:

f=165(Mpa)/(81.3Mpa)=2.02。

Fig11Max.principalstressonmanhole1

Fig12Min.principalstressonmanhole1

Formanhole2,theworstprincipalstressrangeoccursontheedgeofshellbetween

maxat10h=82.1Mpaand

minat2h=-19.7Mpa(Fig13-14).Thus,stressrange=82.1-(19.7)=101.8Mpa.SafetyfactorwithrespecttoallowableinfinitelifecategoryAstressaccordingtoAISC:

f=165(Mpa)/(101.8Mpa)=1.62。

Fig13Max.principalstressonmanhole2

Fig14Min.principalstressonmanhole2

3.4Fatiguestressarounddischargedhole

Forthesymmetricalcharacteristicsoftheholeinthedischargedpart,thisreportjuststudiesoneholewiththesamepositionofmanhole1ofeveryhourposition.

Forthedischargedhole,theworstprincipalstressrangeoccursontheedgeofinsideshellbetween

maxat4h=45.5Mpaand

minat10h=-14.7Mpa(Fig15-16).Thus,stressrange

=45.5-(-14.7)=60.2Mpa.SafetyfactorwithrespecttoallowableinfinitelifecategoryAstressaccordingtoAISC:

=(165Mpa)/(60.2Mpa)=2.74

Fig15Max.principalstressondischargedhole

Fig16Min.principalstressondischargedhole

3.5Fatiguestressof“T”shapebuttjoint

Forthesymmetricalcharacteristicsofsliderring,takeonesideofthe“T”shapebuttjointinthepositionofinletendforexample.Theworstprincipalstressrangeoccursontheedgeofshellbetween

maxat1h=2.35Mpaand

minat3h=-9.5Mpa(Fig17-18).Thus,stressrange

=2.35-(-9.5)=11.85Mpa.SafetyfactorwithrespecttoallowableinfinitelifecategoryAstressaccordingtoAISC:

=(165Mpa)/(11.85Mpa)=13.92

Fig17Max.principalstressof“T”shapebuttjoint

Fig18Min.principalstressof“T”shapebuttjoint

4Generalconlusions

1.Thesafetyfactorwithrespecttoyieldofmanholesandmainshell=3.15whichmeetthestrengthrequirement.

2.Formanhole1,fatiguestressrange=81.3Mpa,safetyfactor=2.02;formanhole2,fatiguestressrange=101.8Mpa,safetyfactor=1.62;fordischargedhole,fatiguestressrange=60.2Mpa,safetyfactor=2.74.For“T”shapebuttjoint,fatiguestressrange=11.85Mpa,safetyfactor=13.92.Thefatiguestrengthofmanholesmeetdesignrequirement.

3.Themaximumstressondrivingtube=17.6Mpa,consideringthestartuptorque2.5timesgreater,safetyfactor=4.54,whicharesafeenough.

4.ThemaximumVonMisesstressofbearingpads=7.57Mpa.ThemaximumVonMisesstressofthecontactsurfaceofsliderring=10.0Mpa.

 

Inaword,thedesignofmillmeetsstaticandfatiguerequirement.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1