XX六年级数学上第五单元圆上课教学方案设计及教学反思作业题答案人教版.docx
《XX六年级数学上第五单元圆上课教学方案设计及教学反思作业题答案人教版.docx》由会员分享,可在线阅读,更多相关《XX六年级数学上第五单元圆上课教学方案设计及教学反思作业题答案人教版.docx(28页珍藏版)》请在冰豆网上搜索。
XX六年级数学上第五单元圆上课教学方案设计及教学反思作业题答案人教版
XX六年级数学上第五单元圆教学设计及教学反思作业题答案人教版
本资料为woRD文档,请点击下载地址下载全文下载地址 1.联系生活实际,引导学生通过观察实物、模型,操作学具和画圆等实践活动,经历从实物抽象到图形,再到认识圆的各部分名称的过程,使学生认识圆的特征。
2.通过组织学生观察和操作等活动,经历“猜想—验证—归纳”的过程,认识圆周率;启发学生利用已有的知识和经验,在掌握圆的周长和面积计算公式的过程中,发展初步的空间观念并能正确、灵活地应用计算公式解决简单的实际问题。
3.在教学活动中,使学生感受探究问题的乐趣,增强应用意识;通过介绍圆周率等数学史料,受到爱国主义的教育。
.使学生在操作中加深对圆的认识。
圆是最常见的图形之一,它是最简单的曲线图形之一。
学生已经对圆有了初步的感性认识,教学时,可以出示一组图,引导学生观察、思考圆和我们以前学过的平面图形——长方形、正方形、三角形等有什么不同。
使学生在分类的过程中,体会到圆是由封闭的曲线围成的平面图形。
当正多边形的边数越来越多时,这个正多边形就会越来越接近圆,这部分内容的教学过程要做到不拖沓,点到为止。
关于画圆,可以分三个层次,第一个层次,让学生借助一些圆形实物画圆,这样画圆有两个目的:
其一,从用眼看,用嘴说,到动手画,让学生逐步感知圆的特点;其二,为进一步认识圆心创造研究材料。
第二个层次,为学生认识圆的半径、直径创造研究材料。
第三个层次是用圆规画圆,体会圆心与圆的位置之间的关系,半径与圆的大小之间的关系等。
在学生操作时,老师要给学生指出操作的目的是什么,把动手与动脑结合起来。
2.该推理时要推理,不要一味地从操作学具做起。
教学“认识圆”,离不开学生的实践活动,让学生在“画一画”“折一折”“练一练”等活动中认识圆的特征及各部分的名称。
但这并不是说,学生的所有认识都要从动手开始,该推理时就要推理,让学生充分利用所学知识,建立起知识之间的联系,如对“同一个圆中,直径的长度是半径的2倍”的认识。
3.注意数学思想与方法的综合应用。
本单元蕴含的数学思想和方法主要有:
化曲为直的思想方法、极限的思想方法、转化的思想方法、对应的思想方法、等积变形的思想方法;归纳的思想方法及猜想与实验验证等。
教学过程中要灵活运用这些数学思想和方法,得出最佳方案。
认识圆………………………………………………………………………………….2课时
2 圆的周长……………………………………………………………………………….2课时
3 圆的面积……………………………………………………………………………….3课时
4 认识扇形……………………………………………………………………………….1课时
整理和复习…………………………………………………………………………………1课时
确定起跑线…………………………………………………………………………………1课时
认识圆
教材第57、第58页的内容及练习十四的第1~5题。
.通过动手操作、观察、思考等教学活动,认识圆并掌握圆的特征。
2.让学生理解在同一圆内直径与半径的关系,学会用圆规画圆。
3.初步渗透化曲为直的数学方法和极限的数学思想。
重点:
直观地认识圆的特征,学会用圆规画圆。
难点:
明确圆心与圆的位置之间的关系,半径与圆的大小的关系。
,实物投影,一些较硬的纸片,圆规。
.出示一组平面图形。
提问:
观察下面的图形,你能把它们分类吗?
2.圆与正多边形的关系。
提问:
你是以什么为标准进行分类的?
提问:
让我们想象一下,当正多边形的边数越来越多时,它就会越来越接近什么图形?
.介绍“神奇的圆”。
老师可以查阅一些资料。
例如:
圆是一种看来简单实际上却很神奇的图形。
古代人最早是从太阳,阴历十五的月亮得到圆的概念。
约一万八千年前的山顶洞人在兽牙上打的孔是圆的,他们还发现圆圆的木头可以滚动,搬动重物时可以省力;大约六千年前,美索不达米亚人制成了第一个轮子;大约四千年前,人们发明了车子。
古埃及人认为圆是神赐予的。
我国古代伟大的思想家墨子在描述圆时说到“一中同长也”,也就是说圆有一个圆心,圆心到圆周的长都相等。
2.初步感知圆。
老师:
圆是如此的神奇,你能想办法在纸上画一个圆吗?
学生借助圆形的实物,画圆并剪下来。
组织交流:
画圆与画用线段围成的图形有什么不同?
学生自由发言,初步体会圆的特征——由曲线围成的图形。
3.认识圆各部分的名称、特征。
认识圆心。
让学生拿出剪下的圆形纸片,对折、打开,换个方向再对折、打开,反复几次,你发现了什么?
引出圆心,让学生在圆形纸片上画出圆心,并用字母o表示出来。
板书:
圆心o
认识直径。
请同学们用直尺量一量刚才折的每一条折痕的长度,你又发现了什么?
提问:
谁能说一说直径是一条什么样的线段?
在纸片上画出一条直径,并用字母d标出。
板书:
通过圆心,并且两端都在圆上的线段叫做直径,一般用字母d表示。
认识半径。
再请同学用直尺量一量从圆心到圆上任意一点的距离,你还能发现什么?
老师板书半径的定义。
老师:
通过以上学习,我们已经初步认识了圆心、半径和直径。
请同学们看教材,加深对这三个概念的理解。
4.半径与直径的关系。
出示问题:
在同一个圆里,能画出多少条半径和直径?
在同一个圆里,所有半径的长度都相等吗?
直径呢?
在同一个圆里,半径和直径有什么关系?
5.用圆规画圆。
老师:
人们从实践中知道了同一个圆内所有的半径都相等这个特点后,才发明了圆规,并用来画圆。
我国大约在两千年前,就能画出地地道道的圆来了。
学生自学用圆规画圆的方法,并尝试画圆。
概括用圆规画圆的方法:
先点个点儿,确定圆心。
张开圆规两脚,针尖对准圆心。
旋转一周,标出圆心、半径及直径。
老师说明并示范用圆规画圆的方法,总结画圆时的两个不动。
有针尖的一端不动。
圆规的两脚不动。
提问:
用圆规画圆时,圆的位置是由什么决定的?
圆的大小是由什么决定的?
6.反馈练习。
完成教材第58页“做一做”的第1题。
学生完成后,说明理由,巩固半径和直径的概念。
完成教材第58页“做一做”的第2题。
在完成第2题时,要引导学生想到两端都在圆上的线段中,直径是最长的一条。
学生试着在没有标出圆心的圆中量出直径的长,以便掌握测量方法。
完成教材第60页练习十三的第1~5题。
学生独立完成,老师巡视指导。
.
填表。
2.按照要求画图。
画出半径是3厘米的圆。
画出直径是3厘米的圆。
在右图中画出两个大小不同的圆,使画出的两个圆的直径之和等于已知圆的直径。
看图填空。
上图中圆的直径是厘米,半径是厘米,长方形的周长是厘米,长方形的面积是平方厘米。
课堂作业新设计
2.略
思维训练
4 2 32 48
教材习题
教材第58页“做一做”
.略
2.略
练习十三
.略
2.6cm 3cm 10cm 3.5cm
3.略
4.略
5.0.48 0.43 2.84 0.52 5.2
认 识 圆
圆:
一条线段绕着它固定的一端在平面上旋转一周时,它的另一端就会画出一条封闭的曲线,这条封闭的曲线叫做圆。
圆的中心点做圆心,用字母“o”表示;连接圆心和圆上任意一点的线段叫做半径,用字母“r”表示;通过圆心并且两端都在圆上的线段叫做直径,用字母“d”表示。
.“圆的认识”是学生系统认识曲线图形特征的开始,是进一步学习圆的周长和面积及以后学习圆柱、圆锥等知识的基础。
2.学生虽已初步认识了圆,但对于建立圆的正确的概念以及掌握圆的特征还是比较困难的,这节课是认识发展的一次飞跃。
教材首先说明什么是圆,并结合周围物体说一说,这样调动了学生已有的生活经验,再通过画圆、折圆、测量等活动,展现圆的特征,其目的在于让学生通过观察、操作理解圆中的各部分关系,从而掌握圆的特征并解释生活中相关问题。
圆是在学生学过了直线图形以及圆的初步认识的基础上进行教学的。
圆这一平面上的曲线图形,学生在生活中经常看到,它到底有什么特征呢?
是本节课学生学习的重点,在学习圆的认识时,学生通过观察、操作,自己获取一些有关圆的特征的知识,这样会大大提高学生的学习兴趣,发挥学生的主体性。
本节课的重点在于理解同一个圆的半径都相等,同一个圆里半径和直径的关系。
.让学生举例日常生活中常见的一些圆形物体的圆面,唤起了学生对生活中圆的感知,使学生体会到圆就在我们身边,从而培养学生观察和认识周围事物的兴趣和意识。
让学生亲自动手摸圆,说一说是如何摸出来的,学生很容易说出圆与其他平面图形的区别。
它不是由线段围成的,而是由一条光滑的曲线围成的封闭图形。
把一个抽象的概念变成了一个亲身的感受,学生兴趣很高,印象深刻。
2.通过画、折、量等操作,获得充足的、丰富的感性材料。
在充分感知的基础上,通过叙述操作过程,把感知经过思维内化为表象,再通过多媒体演示及在教师的指导下,抽象概括出圆心、半径、直径等概念,使学生掌握圆的知识,并学会思维的方法。
圆的对称性,用圆设计漂亮的图案
教材第59页的内容及练习十三的第6~10题。
.通过观察、操作等活动,进一步认识轴对称图形和对称轴的概念。
知道圆是轴对称图形,圆有无数条对称轴。
2.让学生能画出轴对称图形的对称轴,能根据对称轴画出与给定图形对称的图形。
3.培养学生的空间观念和探索精神。
重点:
能准确找出学过的平面图形的对称轴,能根据对称轴画出与给定图形对称的图形。
难点:
画出由多个圆组成的组合图形的对称轴。
画好的圆若干个,实物投影。
课前布置学生收集轴对称图形。
老师将学生收集到的轴对称图形连同自己准备的蜻蜓、天平等轴对称图形贴到黑板上。
老师:
同学们,黑板上这些美丽的图案都是轴对称图形,今天这节课,我们就来学习轴对称图形。
板书课题:
轴对称图形。
.圆的对称性。
老师:
我们学过的长方形、正方形都是轴对称图形,我们刚刚认识的圆是轴对称图形吗?
为什么?
学生动手把圆对折,确定圆是轴对称图形。
结论:
圆是轴对称图形,折痕所在的直线就是圆的对称轴。
追问:
一个圆有多少条对称轴?
出示两个圆,学生在图中分别画出两个圆的对称轴。
老师强调:
对称轴要用虚线表示。
追问:
你能画出几条呢?
板书:
圆有无数条对称轴。
2.用圆设计图案。
小组合作,用圆规和尺子,设计美丽的图案,然后集体欣赏。
3.练习。
完成教材第61页练习十三的第6题。
引导学生回忆学过的轴对称图形有正方形、长方形、等腰三角形、等边三角形、等腰梯形和圆等。
只有一条对称轴的:
等腰三角形、等腰梯形
有两条对称轴的:
长方形
有三条对称轴的:
等边三角形
有四条对称轴的:
正方形
有无数条对称轴的:
圆
完成第61页教材练习十三的第7题。
可以让学生先描点再画线,画出与给定图形对称的图形。
完成教材第61页练习十三的第8~10题。
.填空。
如果一个图形沿着对折,两侧的部分能够,这个图形就是轴对称图形。
折痕所在的这条直线就叫做。
圆是图形,它有条对称轴。
2.选择。
下列各图形中,不是轴对称图形。
A.长方形 B.正方形 c.平行四边形 D.圆
圆有条对称轴。
A.1
B.2
c.无数
D.3
.下面各图形分别有几条对称轴?
请你画出来。
2.请你用直尺和圆规设计一个轴对称图形。
课堂作业新设计
.一条直线 完全重合 对称轴 轴对称 无数
2.c c
思维训练
.一条 一条 三条 画图略
2.略
教材习题
练习十三
6.略
7.略
8.无数条 无数条 2条 1条 3条 2条
9.直径:
18÷3=6 周长:
×2=48
0.略
轴对称图形
圆是轴对称图形,直径所在的直线是圆的对称轴。
圆有无数条直径,所以圆有无数
条对称轴。
一条直线是不是圆的对称轴,可以通过观察这条直线是否通过圆心来判断。
用圆规和直尺设计漂亮的图案。
.轴对称图形的教学重点是使学生初步认识轴对称图形的一些基本特征,难点是掌握判别轴对称图形的方法。
2.在此之前学生已经学过一些平面图形的特征,形成了一定的空间观念。
3.自然界和生活中具有轴对称性质的事物有很多,也为学生奠定了感性基础。
轴对称是一种最基本的图形变换。
在自然界和日常生活中具有轴对称性质的事物很多,学生对于轴对称现象并不很陌生。
本节课按照“知识引入—概念教学—知识应用”的顺序逐步展开的,体现了知识的形成过程。
.通过情境活动,引导学生感知轴对称。
采用有趣的剪纸比赛等方法导入,让学生经历由特殊到一般,再到特殊的过程,可以非常巧妙地抓住学生的心理,让学生在游戏的活动中体验、感知轴对称。
2.教学中突出学生的主体地位。
学生剪一剪、议一议,探究出了轴对称的秘密。
恰当的评价,调动学生的积极性,拓展学生的思维空间,关注学生的情感体验,更突出了学生的主体地位。
从参与面上看,全班学生都调动起来了,参与热情也比较高。
3.拓展运用、强化表象。
让学生感悟到数学知识就在我们身边,数学应用就在我们的生活之中。
教师可以巧妙地把数学知识运用到“科学”“艺术”“建筑”等学科中,注重不同学科知识的整合,这样不仅降低了学生理解上的难度,还使得单调的内容变得丰富多彩,进一步使学生感受到数学学习的乐趣和应用价值。
圆的周长
教材第62~64页的内容。
.使学生直观认识圆的周长,掌握圆的周长的计算公式。
2.通过对圆周率π的值的探索,培养学生的联想能力和初步的逻辑思维能力。
3.介绍我国数学家对圆周率研究的贡献,对学生进行爱国主义教育和辩证唯物主义的启蒙教育。
重点:
掌握圆的周长的计算公式。
难点:
圆的周长公式的推导。
投影片,直尺,细线,绳子和圆片。
.老师用投影片出示下面两个图形,让学生找出直径和半径。
提问:
什么是圆的直径?
什么是半径?
在一个圆中直径和半径的长度有什么关系?
2.老师用投影片出示下面的图形。
提问:
什么是长方形的周长?
什么是正方形的周长?
它们的计算结果用的是什么计量单位?
学生指出这两个图形的周长,并进行计算。
.圆的周长的含义。
让学生拿出发的圆形纸片,平放在桌面上,试着指一指圆形纸片的周长,注意起点和终点。
指名学生指一指圆的周长。
说明围成圆的曲线的长度叫做圆的周长。
2.讨论绳测法和滚动法,渗透化曲为直的思想。
学生用手中的直尺和细线等学具试着测量手中圆形纸片的周长。
绳测法。
用线绕圆的一周,从这一点开始,再到这一点,多余部分剪掉,拉直,这条线段的长度是谁的长度?
滚动法。
让圆滚动一周,从直尺的0刻度到滚动一周的终点,这段距离是谁的长度?
用绳测法和滚动法,可以测量出手中圆形纸片的周长,这个圆的周长是多少呢?
3.探究圆的周长与什么有关系。
讨论圆的周长与什么有关系。
屏幕演示:
直径是1分米的圆,滚动了一周,这段距离就是这个圆的周长;直径是0.8分米的圆滚动一周的距离就是这个圆的周长。
小结:
直径长,周长长;直径短,周长短。
由此看出圆的周长和直径有关系。
板书:
圆的周长 直径
4.探究圆的周长与它的直径有什么关系。
学生分组实验,测量圆的周长,计算周长是直径的多少倍。
每组把量得的数据填在表格里。
指名说一说得出的结果,老师把这些数据写在黑板上。
引导学生进行讨论,使学生了解到圆的周长总是直径的3倍多一些。
老师归纳:
任何圆的周长和直径的比值都是3.14多一些,它们的比值是一个固定不变的数。
我们把圆的周长和直径的比值叫做圆周率。
5.介绍圆周率。
阅读教材第63页的“你知道吗?
”。
老师说明:
圆周率用字母π表示,它是一个无限不循环小数,π=3.1415926535……在实际应用中一般只取它的近似值,即π≈3.14。
6.归纳公式。
如果用c表示圆的周长,那么:
c=πd或c=2πr。
7.计算圆的周长。
老师出示例1,指名读题,然后板书解题过程。
板书:
2×3.14×33=207.24 207.24cm≈2m
km=1000m
000÷2=500
答:
这辆自行车轮子转1圈,大约可以走2m。
小明从家到学校,轮子大约转了500圈。
.直接写出下面各题的得数。
3.14×1= 3.14×2= 3.14×3=
3.14×4=
3.14×5=
3.14×6=
3.14×7=
3.14×8=
3.14×9=
2.求下面各圆的周长。
3.填表。
半径r
直径d
周长c
4
.2
2.56
4.一辆汽车的车轮直径是1.02米,车轮转动10周前进多少米?
从一张边长为6厘米的正方形纸上剪下一个最大的圆,这个圆的周长是多少厘米?
课堂作业新设计
.3.14 6.28 9.42 12.56 15.7 18.84 21.98 25.12 28.26
2.12.56cm 18.84cm 50.24cm
3.8 25.12 0.6 3.768 2 4
4.32.0米
思维训练
8.84厘米
教材习题
教材第64页“做一做”
.18.84cm 18.84cm 31.4cm
2.1.5m
圆的周长
任意一个圆的周长与它的直径的比都是一个固定的数,我们把它叫做圆周率。
用字
母π表示。
圆周率是一个无限不循环小数,如无特殊要求,圆周率π一般取3.14。
根据圆周率的定义可以得知:
圆的周长=直径×圆周率=半径×2×圆周率。
2×3.14×33=207.24 207.24cm≈2m
km=1000m
000÷2=500
答:
这辆自行车轮子转1圈,大约可以走2m。
骑车从家到学校,轮子大约转了500圈。
.教师的语言不够精练,对学生的点拨过多,问题的指向太窄,都可能束缚学生的思维。
2.在推导圆的周长的计算公式的过程时,速度不能太快,应与之前的圆周率是怎样得来的进行较深入的联系教学,这样才能使学生更好地理解、掌握圆的周长的计算公式。
3.小组合作时,要求必须提得明确。
教材向我们呈现了什么是圆的周长,以及通过操作发现圆的周长与直径的关系,展示了如何计算圆的周长,可见圆的周长的计算方法是通过学生自主探索总结发现的,教学时,我们应充分认识到这一点。
学生已经有了对周长的认识,只是研究圆的周长需要探索圆的周长与直径的关系。
对于圆的周长与直径的这个倍数关系,学生通过测量、计算是能发现的。
教学时,关键是引导学生发现圆的周长与直径之间的倍数关系。
.让学生在生活中学习数学。
本节课选取实际生活中的场景,融小组合作、动手操作以及观察、归纳和概括为一体,引导学生的多种感官参与学习过程;同时通过介绍“圆周率”的发展历史,来开拓学生的视野,丰富学生的知识面,使学生了解知识的来龙去脉,对学生进行了生动的爱国主义教育,激发学习兴趣。
而且,利用圆周率的意义准确解答开始的问题,前后呼应,使计算公式的总结水到渠成。
2.提高应用意识,努力体现课堂教学的开放性。
把所学的知识应用于生活实际,不但可以使学生感到我们所学的知识是有用的,而且有利于提高学生灵活应用知识的本领,在本节课的最后部分可以安排几个生活问题,提高学生的应用意识,不但培养了学生开放型的思维方式,还激发了学生动手的愿望。
圆的周长练习课
教材第65、第66页的练习十四。
.通过练习,巩固对圆的周长公式的理解和掌握,能熟练应用圆的周长公式解决问题。
2.进一步培养学生应用公式解题的能力。
3.培养学生仔细观察、积极思考的学习习惯。
灵活应用圆的周长公式解题。
实物投影。
.老师:
什么是圆的周长?
什么是圆周率?
圆的周长的计算公式是什么?
板书:
c=πd c=2πr
2.完成下列口算练习。
3.14×1= 3.14×2= 3.14×3= 3.14×4=
3.14×5=
3.14×6=
3.14×7=
3.14×8=
3.14×9=
3.14×10=
3.14×20=
3.14×100=
要求学生先口算出结果,再熟记。
.完成教材第65页练习十四的第1、第2题。
学生独立完成,写在练习本上。
集体订正。
提醒学生正确应用公式。
已知半径,求周长:
c=2πr
已知直径,求周长:
c=πd
2.完成教材第65页练习十四的第3题。
指名读题。
独立完成。
学生板演,说说自己使用的方法。
已知周长,求直径:
d=c÷π
提问:
如果已知周长,求半径,用什么方法呢?
板书:
r=c÷π÷2
3.完成教材第65页练习十四的第4题。
指名读题。
说说怎样求出规定时间内,分针的尖端所走的路程。
点拨:
求规定时间内,分针的尖端所走的路程就是求以分针为半径的圆的周长。
学生接着完成后面的问题。
4.完成教材第65、第66页练习十四的第5~11题。
学生独立完成,集体订正。
.填空。
圆的周长总是它直径的倍。
用c表示圆的周长,d表示圆的直径,r表示圆的半径,圆的周长的计算公式可以写成或。
长的。
用周长是2分米的正方形纸片剪成一个最大的圆,这个圆的周长是厘米。
2.求下面各图形的周长。
3.一个圆形蓄水池,从里边量周长是50.24米。
它的半径是多少米?
4.一个半圆形花坛,外围周长是51.4米。
这个花坛的直径是多少米?
看图填空。
左图中两个圆的面积相等,圆心分别是o1、o2,半径是厘米,直径是厘米,每个圆的周长是厘米,长方形的周长是厘米。
课堂作业新设计
5.15×2×3.14×3=282.6 15×2×3.14÷2=47.1≈47
6.50.24m=5024cm 5024÷=40
7.16 12.56 9.42 21
8.100÷4÷2=12.5
9.50×4+50×3.14÷2=278.5=2.785
0.2×5×3.14=31.4
1.*第一组:
3.14×7+7×2=35.98
第二组:
3.14×7+7×4=49.98
第三组:
3.14×7+7×8=77.98 发现略
圆的面积
教材第67、第68页的内容。
.使学生理解圆的面积公式的推导过程,掌握求圆的面积的方法并能正确计算。
2.培养学生运用转化的思想解决问题的能力。
重点:
掌握圆的面积的计算公式,能够正确地计算圆的面积。
难点:
理解圆的面积公式的推导过程。
实物投影,各种图形的纸片。
.我们学过哪些