透镜设计练习单透镜双胶合.docx

上传人:b****6 文档编号:3047581 上传时间:2022-11-17 格式:DOCX 页数:17 大小:251.26KB
下载 相关 举报
透镜设计练习单透镜双胶合.docx_第1页
第1页 / 共17页
透镜设计练习单透镜双胶合.docx_第2页
第2页 / 共17页
透镜设计练习单透镜双胶合.docx_第3页
第3页 / 共17页
透镜设计练习单透镜双胶合.docx_第4页
第4页 / 共17页
透镜设计练习单透镜双胶合.docx_第5页
第5页 / 共17页
点击查看更多>>
下载资源
资源描述

透镜设计练习单透镜双胶合.docx

《透镜设计练习单透镜双胶合.docx》由会员分享,可在线阅读,更多相关《透镜设计练习单透镜双胶合.docx(17页珍藏版)》请在冰豆网上搜索。

透镜设计练习单透镜双胶合.docx

透镜设计练习单透镜双胶合

第15章单透镜设计

15.1设计任务

设计一个焦距为100mm,相对孔径为1/5的单透镜系统,全视场2ω为10º,物距为无限远,在可见光下工作,选用K5玻璃,光阑设置在入射光线遇到的透镜的第一个光学表面。

15.2设计过程

我们新建一个“LENS.ZMX”文件。

点击菜单栏中的“文件(File)”,将刚刚新建的文件另存为(SaveAs...)名为“单透镜设计”的文件,保存类型按默认设置,即文件名称的后缀为“.ZMX”。

在屏幕中有一个名为“透镜数据编辑(LensDataEditor)”的窗口,如图15-1所示。

图15-1透镜数据编辑(LensDataEditor)窗口

图15-2General窗口

第一步:

输入系统参数——入瞳直径值

点击“Gen”按钮,或执行命令“System→General...”,或同时按下快捷键“Ctrl+G”,可以打开“General”窗口,如图15-2所示。

因为系统的焦距为100mm,相对孔径为1/5,所以入瞳直径(EntrancePupilDiameter)的孔径值(ApertureValue)为100×1/5=20mm。

第二步:

输入系统参数——视场

点击“Fie”按钮,或执行命令“System→Fields...”,或同时按下快捷键“Ctrl+F”,可以打开“FieldData”窗口,如图15-3所示。

因为全视场

为10º,所以ω=5º,0.707ω=3.535º,0.5ω=2.5º,0.3ω=1.5º。

图15-3Fields窗口

第三步:

输入系统参数——波长范围

点击“Wav”按钮,或执行命令“System→Wavelengths”,或同时按下快捷键“Ctrl+W”,可以打开“WavelengthData”窗口,如图15-4所示。

我们可以直接输入波长的数值,也可以选用“F,d,C[Visible]”,点击“Select”按钮即可选中,再点击“OK”按钮确定。

主波长(Primary)选中0.58756180μm。

注意:

可以在“X-Feild”列输入视场数据,也可以在“Y-Feild”列输入视场数据,但是最大视场值为半视场ω而不是全视场2ω。

图15-4Wavelengths窗口

第四步:

输入“透镜数据编辑(LensDataEditor)”的窗口中的数据

如图15-1,系统中有三个表面(Surface),从上到下依次是OBJ、STO和IMA。

OBJ就是物面(ObjectPlane),STO即孔径光阑(ApertureStop)的意思,但STO不一定就是光照过来所遇到的第一个透镜,在设计一组光学系统时,STO可选在任一透镜上。

通常第一表面就是STO,若不是如此,则可在STO这一栏上按下鼠标,可选择在前面插入(InsertSurface,或按下键盘中的“Insert”键)或在后面插入表面(InsertAfter,或同时按下快捷键“Ctrl+Insert”),于是STO就不再落在第一个透镜边框上了。

如果要删除某个光学表面,可以点击键盘中的“Delete”,或执行命令“Edit→DeleteSurface”。

而IMA就是像平面(ImagePlane)。

因为设计任务要求光阑设置在入射光线遇到的透镜的第一个光学表面,所以我们选中STO行,并在其后面插入一行,此时OBJ为第0个面,STO为第1个面,IMA为第3个面,光学表面类型(Surf:

Type)为“Standard”,即标准球面。

在曲面半径(Radius)列从上到下依次输入“Infinity”、“100”、“-100(这里的正负号遵从应用光学中的符号规则)”和“Infinity”,单位为mm,其中Infinity为无限大的意思,表示该曲面半径为无限大,即该表面为平面。

在厚度、间距(Thickness)列依次输入“Infinity(这是因为物距为无限远)”、“5”和“100(因为设计任务要求系统的焦距为100mm,透镜很薄,故初始结构设定最后一光学表面与像面的距离为100mm)”,单位为mm。

在玻璃(Glass)列和STO行的交叉单元格中输入“K5”。

“半口径(Semi-Diameter)”列会由自动计算出来,如图15-5所示。

图15-5单透镜的LensDataEditor窗口

现在系统参量的数据已经基本输入完毕,接下来我们来检验设计是否达到要求。

第五步:

查看外形轮廓图

点击“Lay”按钮,或执行命令“Analysis→Layout→2DLayout”,或同时按下快捷键“Ctrl+L”即可打开“Layout”图形窗口,如图15-6所示。

图15-6单透镜的二维轮廓图(Layout)

从图15-6中可以看出实际光线的焦平面并不与IMA相重合,而且不同视场的焦平面也并不相互重合,所以我们要进行优化以达到像质优良。

第六步:

打开“Ray”图形窗口查看像差情况

点击“Ray”按钮,或执行命令“Analysis→Fans→RayAberration”,或同时按下快捷键“Ctrl+R”,即可打开“RayFan”图形窗口。

在该图形窗口中可以看到五组(十个)图形,这是因为我们一开始设置了五个视场值,而每个视场又包含了子午曲线和弧矢曲线,所以共有五组(十个)图形。

在该图形窗口中,“MAXIMUMSCALE:

±2000.000MICRONS”表示图形的最大比例尺为±2000.000微米,如图15-7所示。

很显然,这个数值是不合理的,说明初始结构的像差太大了。

图15-7RayFan图

第七步:

打开“FFTMTF”图形窗口,查看像差情况

点击“MTF”按钮,或执行命令“Analysis→MTF→FFTMTF”,或同时按下快捷键“Ctrl+M”,即可打开“FFTMTF”图形窗口,如图15-8所示。

从图15-8可以看出,当横坐标的数值为10lp/mm时,即空间频率为10lp/mm时的FFTMTF值不足0.1,而且在6lp/mm附近的FFTMTF值几乎为零。

图中系统提示“ERROR”,这说明单透镜的FFTMTF值不合理,需要优化。

第八步:

设定像质评价函数(MeritFunction)

图15-8单透镜的FFTMTF

为了优化该系统,就要先设定像质评价函数(MeritFunction)。

执行命令“Editors→MeritFunction”,或按下快捷键“F6”,即可打开“MeritFunctionEditor”编辑窗口。

在“MeritFunctionEditor”编辑窗口中,我们执行命令“Tools→DefaultMeritFunction”,即可打开默认评价函数(DefaultMeritFunction)对话窗口,如图15-9所示。

图15-9默认评价函数(DefaultMeritFunction)对话窗口

在对话窗口(图15-9)中,我们选择“PTV+SpotRadius+ChiefRay”组合方法。

同时设定玻璃(Glass)的边界条件(ThicknessBoundaryValues:

)为“Min:

2mm,Max:

20mm”,表示玻璃的边缘(对凸透镜而言,它是指凸透镜边缘厚度;对凹透镜而言,它是指凹透镜的中心厚度)最小厚度为2mm,最大厚度为20mm。

边缘厚度(Edge)也可以限定,日后再提。

当我们按图15-9中的参数设置好后,点击“OK”键确定。

这时系统会弹出一个较为复杂的窗口。

在该窗口中,有一个黑色背景的单元格“DMFS”,在本单元格中输入大写字母“EFFL(有效焦距值)”,按Enter键后,在“EFFL”单元格的右侧显示“Wav#”、“2”,这表示波长为“第2个”设定的波长,即“0.58756180μm”,这是因为该波长被设定为“Primary(主波长)”。

在“Target”单元格的下面输入“100”,这是因为设计任务要求系统的焦距为100mm。

在“Weight”单元格的下面输入“1.0”。

在“Value”下面的单元格中双击鼠标左键或点击“Update”即可显示出最右面两列的数据,如表15-1所示。

表15-1评价函数参数设置(部分)

Oper#

Type

Wave

Target

Weight

Value

%Contrib

1(EFFL)

EFFL

2

1.000000

100.000000

96.523968

99.893362

第九步:

设定参与优化的变量

除了设定默认评价函数(DefaultMeritFunction)外,还要设定参与优化的变量。

我们先选中“LensDataEditor”窗口中的“Radius”列中的“100”单元格,然后按下快捷键“Ctrl+Z”,或点击鼠标右键后在弹出的对话框中选择“SolveType:

Variable”,那么在该单元格的右侧会出现一个字母“V”,该字母表示其前面的单元格变量是参与优化过程中的,即是可变化的。

按照相同的方法,可以设定“Radius”列中的“-100”单元格和“Thickness”列中的“100”单元格为可变化的,如图15-10所示。

图15-10设置参与优化的变量

图15-11优化后的单透镜的透镜数据编辑(LensDataEditor)窗口

第十步:

优化系统参数

在我们设定好默认评价函数(DefaultMeritFunction)和参与优化的变量后,点击“Opt”按钮,或者执行命令“Tools→Optimization”,或者同时按下快捷键“Shift+Ctrl+O”,即可打开Optimization窗口,点击“Automatic(自动优化)”命令,当优化过程自动停止后关闭或退出对话框。

15.3设计结果

设计结果的“透镜数据编辑器”窗口如图15-11所示。

此时得到的系统二维轮廓图如图15-12所示。

图15-12优化后的单透镜的二维轮廓图(Layout)

图15-13优化后的单透镜的FFTMTF

此时得到的RayAberration图形窗口显示“MAXIMUMSCALE:

±500.000MICRONS”表示图形的最大比例尺已经缩小到初始结构的1/4,像差得到明显改善。

此时得到的FFTMTF图形窗口如图15-13所示。

从图15-13中可知,空间频率为10lp/mm处的FFTMTF值已得到改善。

我们还可以考察其它像质评价的图像窗口,如Opd图形窗口、Spt图形窗口等。

从这些图形窗口中可以看出,虽然经过初次优化后的系统成像质量已经得到改善,但是仍然不能满足实用要求需要进一步的优化。

因为单个透镜很难做到像质优良,所以我们往往将系统复杂化,现在销售的相机镜头有的镜片数超过了十片。

15.4设计练习

请您总结一下单透镜的设计过程和技巧,并自行完成如下设计任务。

设计一个焦距为80mm,相对孔径为1/4的单透镜系统,全视场2ω为8º,物距为无限远,在可见光下工作,选用K9玻璃,光阑设置在入射光线遇到的透镜的第一个光学表面。

提示:

“K9”是中国玻璃库的牌号,如果ZEMAX源程序中没有安装中国玻璃库文件,需要自行在网上查找中国玻璃库文件,解压该库文件后,把这些解压出来的库文件“复制→粘贴”到“C:

\ZEMAX\Glasscat”路径的“Glasscat”文件夹中。

在“LenDataEditor”窗口中的“Glass”列中的相关单元格中输入“K9”后按一下“Enter”键会弹出一个窗口,该窗口会提示如下信息:

Error971:

GlassK9couldnotbefoundinthecurrentcatalogs.However,itwasfoundinthechinesescatalog.Doyouwanttoa

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 法律文书 > 调解书

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1