供电系统中谐波的产生危害及治理.docx

上传人:b****5 文档编号:3028423 上传时间:2022-11-17 格式:DOCX 页数:18 大小:256.55KB
下载 相关 举报
供电系统中谐波的产生危害及治理.docx_第1页
第1页 / 共18页
供电系统中谐波的产生危害及治理.docx_第2页
第2页 / 共18页
供电系统中谐波的产生危害及治理.docx_第3页
第3页 / 共18页
供电系统中谐波的产生危害及治理.docx_第4页
第4页 / 共18页
供电系统中谐波的产生危害及治理.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

供电系统中谐波的产生危害及治理.docx

《供电系统中谐波的产生危害及治理.docx》由会员分享,可在线阅读,更多相关《供电系统中谐波的产生危害及治理.docx(18页珍藏版)》请在冰豆网上搜索。

供电系统中谐波的产生危害及治理.docx

供电系统中谐波的产生危害及治理

1、概述

“谐波”一词起源于声学,后来才慢慢延伸成一个较为严谨的定义。

一般在理想情况下,供电部门向用户提供具有单一恒定的工业频率和规定的系统标准称电压的电能,但在实际中供电电压的波形往往会偏离正弦波形而发生畸变,即产生谐波[1]。

有关谐波的数学分析在18世纪和19世纪已经奠定了良好的基础。

傅里叶等人提出的谐波分析方法至今仍被广泛应用。

电力系统的谐波问题早在20世纪20年代和30年代就引起了人们的注意。

当时在德国,由于使用静止汞弧变流器而造成了电压、电流波形的畸变。

1945年J.C.Read发表的有关变流器谐波的论文是早期有关谐波研究的经典论文[2]。

到了50年代和60年代,由于高压直流输电技术的发展,发表了有关变流器引起电力系统谐波问题的大量论文。

70年代以来,由于电力电子技术的飞速发展,各种电力电子装置在电力系统、工业、交通及家庭中的应用日益广泛,谐波所造成的危害也日趋严重。

世界各国都对谐波问题予以充分和关注。

国际上召开了多次有关谐波问题的学术会议,不少国家和国际学术组织都制定了限制电力系统谐波和用电设备谐波的标准和规定。

之所以有很多的科研工作者致力于研究谐波,主要是因为谐波的危害十分严重,它会使电能的生产、传输和利用的效率降低,使电气设备过热、产生振动和噪声,并使绝缘老化,使用寿命缩短,甚至发生故障或烧毁。

谐波可引起电力系统局部并联谐振或串联谐振,使谐波含量放大,造成电容器等设备烧毁。

谐波还会引起继电保护和自动装置误动作,使电能计量出现混乱。

对于电力系统外部,谐波对通信设备和电子设备会产生严重干扰。

造成电力系统电压波形畸变的根本原因是系统中的非线性负荷以及系统本身存在非线性元件。

谐波会增加电力系统损耗,降低安全,增加计量装置误差,可能导致保护系统和自动装置误动作,干扰通信线路的正常工作。

因此,谐波是电力质量的重要指标之一。

为保证供电系统中所有的电气、电子设备进行正常的工作,必须采取有力的措施,抑制电网谐波。

2、谐波的定义

供电系统谐波,是指一些频率为基波频率(我国取50HZ)整数倍的正弦波分量,又称为高次谐波。

这是由于在交流电网中,由于存在许多的非线性电气设备,电压u(t)和电流i(t)的波形实际上不是完全的正弦波形,而是存在一定畸变的非正弦波。

它通常是周期性的电气分量,利用傅里叶级数分析,可得到如下等式:

式中项称为基波,称为基波频率;其他各项均成为谐波。

由于谐波频率是基波频率的整数倍,所以被称为二次谐波,被称为三次谐波,……。

、为第n次谐波电压、电流的有效值,、是第n次谐波电压、电流的初相角。

为了能够更好的理解谐波的定义,我们可以参照图2.1和图2.2。

图2.1理想的交流电压、电流波形

图2.2实际的交流电压、电流波形

图2.1是理想的交流电压,电流波形,图2.2是实际的交流电压,电流波形。

比对两个图,可以发现在图2.2中的波形中存在明显毛疵,凹陷或者凸起,这些瑕疵就是由于谐波的存在而造成的。

在国际电工标准(IEC555-2)和在国际大电流会议的文献中的定义:

“谐波分量为周期量的傅里叶级数中大于1的n次分量”。

IEEE标准中定义为:

“谐波为一周期波或量的正弦波分量,其频率为基波频率的整数倍”。

由于谐波频率是基波频率的整数倍,因此,我们也常称它为高次谐波。

3、谐波的产生

在电能的生产、传输、转换和使用的各个环节中都会产生谐波。

在其它几个环节中,谐波的产生主要是来自具有非线性特性的电气设备:

①具有铁磁饱和特性的铁芯设备,如:

变压器、电抗器等;②以具有强烈非线性特性的电弧为工作介质的设备,如:

气体放电灯,交流弧焊机、炼钢电弧炉等;③以电力电子元件为基础的开关电源设备,如:

各种电力变流设备(整流器、逆变器、变频器)、相控调速和调压装置、大容量的电力晶闸管可控开关设备等,它们大量的用于化工、电气铁道、冶金、矿山等工矿企业以及各式各样的家用电器中。

即使电源电压是正弦波形,但由于负荷具有其电流不随电压同步变化的非线性的电压—电流特性,使得流过负荷的电流是非正弦波形的,它由基波及其整数倍的谐波组成。

产生的谐波使电网电压严重失真,而电网还必须向它提供额外的电能。

低压供电系统的非线性设备产生的谐波电流可分为稳定的和波动的两大类谐波。

前者的幅度不随时间变化,如视频显示设备和测试仪表等产生的谐波,这类设备对电网来说表现为恒定的负载;后者由激光打印机、复印机、微波炉等产生,各次谐波的幅值随时间变化,这类设备对电网来说是一个随时间变化的负载。

随着电力电子设备使用的不断增加,产生的谐波又具有较大的振幅,它们是电力系统在稳态运行下的主要谐波源。

前面已经提到谐波源通常是指各类特定的电气设备,即非线性电气设备,我们将这些电气设备进行分类,主要可以分为以下四大类:

(1)电弧加热设备:

如电弧炉、电焊机等。

(2)交流整流的直流用电设备:

如电力机车、电解、电镀等。

(3)交流整流再逆变用电设备:

如变频调速、变频空调等。

(4)开关电源设备:

如中频炉、彩色电视机、电脑、电子整流器等。

目前,电力系统谐波的产生主要来自三方面:

发电机产生谐波,输配电系统产生谐波,用电设备产生谐波。

3.1发电机产生的谐波

发电机由于三相励磁绕组在制作上很难做到绝对对称,因此,磁极磁场也并非完全按正弦分布,感应电势也就不完全是正弦波,多少也会产生一些谐波。

但是,正常设计的发电机,由于对发电机的结构和接线采取一些措施,在一定程度上消弱谐波的电势,其电势谐波含量很小,一般可以忽略不计。

当对发电机的结构和接线采取一些措施后,可以认为发电机供给的是具有基波频率的正弦波形的电压。

3.2输配电系统产生的谐波

输配电系统中,电力变压器是产生谐波主要设备。

由于变压器铁芯具有非线性的磁化特性,加上设计变压器是考虑经济性,其设计磁通密度选择在磁滞回线的拐点附近,造成变压器的励磁电流(即空载电流)为非正弦波形,其中含有大量的谐波电流。

谐波电流的大小与设备工作时施加的电压幅值有关,电压越高,运行点越深入饱和区,空载电流的波形畸变越大,谐波含量越高,其中3次谐波电流可达额定电流的0.5%。

由于配电系统中存在为数众多的变压器,空载电流中的谐波在线路电感和对地电容的放大下,可以汇合成相当大的配电系统谐波电流。

3.3用电设备产生的谐波

晶闸管整流设备:

由于晶闸管整流在电力机车、铝电解槽、充电装置、开关电源大等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。

我们知道,晶闸管整流装置采用移相控制,从电网吸收的是缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,显然在留下部分中含有大量的谐波。

如果整流装置为单向整流电路,在接感性负载时则含有奇次谐波电流,其中3次谐波的含量可达基波的30%;接容性负载时则有奇次谐波电压,其谐波含量随电容值的增大而增大。

经统计表明:

整流装置产生的谐波占所有谐波的近40%,这是最大的谐波源。

变频装置:

变频装置常用于风机、水泵、电梯等设备中,由于采用了相位控制,谐波成分很复杂,除含有整数次谐波外,还含有份数次谐波,这类装置的功率一般较大,随着变频调速的发展,对产生的谐波也越来越多。

电弧炉、电石炉:

电弧炉在冶炼过程的熔化期造成的由于三相电极间的反复不规则金属性短路、断弧而产生谐波。

由于三相负荷不对称,产生较多三次谐波。

电石炉在配电网或较小供电网中也是重要的谐波源,其中主要是2至7次的谐波,平均可达基波的8%、20%,最大可达45%。

气体放电光源:

荧光灯、高压汞灯、高压纳灯与金属卤化物灯等属于气体放电类电光源。

它们利用具有一定压力的汞、钠、镝、铟或金属卤化物的蒸汽,电弧放电时因具有负的伏安特性而产生谐波电流。

气体放电灯主要产生三次谐波。

家用电器:

电视机、录像机、计算机、调光灯具、调温炊具等,因具有调压整流装置,会生产较深的奇次谐波。

在洗衣机、电风扇、空调等有绕组的设备中,因不平衡电流的变化也能使波形改变。

这些家用电器虽然功率较小,但数量巨大,也是谐波的主要来源之一。

同时这些设备产生的谐波又具有较大的振幅,所以目前它们是供电系统中的主要谐波源。

以上为目前电力系统中存在的主要谐波源,在读文献的过程中我们不难发现,一般情况下我们在进行谐波分析的时候只考虑电力系统中存在的奇次谐波,而不考虑偶次谐波,这主要是因为以下两个方面的原因:

一是,奇次谐波的危害远远大于偶次谐波的危害;二是,在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。

4.谐波的危害

谐波的危害表现为干扰通信线路的正常工作;引起电机、变压器和电容器等电气设备附加损耗和发热,使设备温度升高,效率降低;绝缘加速老化,缩短使用寿命,甚至损坏;降低继电保护、控制,以及检测装置的工作精度和可靠性等。

谐波注入电网后会使无功功率加大,功率因数降低,甚至可能引发并联或串联谐振,损坏电气设备。

随着电子技术的发展,使用大功率半导体开关器件以及各类开关电源的产品的增多,如电视机、空调器、节能灯、调光器、洗衣机、微波炉等家用电器和信息技术设备等迅速涌入居民家庭,虽然每台设备向电网注入的谐波电流不大,但设备数量大、分布广。

有些家用电器如电视机、空调器等还有集中使用的特点,使某些时段对公用电网造成的谐波问题特别突出,不但使接入电网的设备无法正常工作,甚至造成故障,而且还会使供电系统中性线承受的电流超载,影响供电系统的电力输送。

在电压跌落、浪涌、电压脉冲与瞬时供电中断等电能质量问题,虽然持续时间很短、变化很快,但对敏感的设备还是会造成一定的破坏作用。

如计算机失去电源2s就可能破坏数据或数据丢失;在0·1s内电压突降就可能对自动化设备控制的连续精加工生产线造成异常的生产状况和质量破坏等。

又如谐波电压在电动机短路阻抗上产生的谐波电流和电动机负序基波电流一起使设备产生附加热损耗,并且在电动机起动时容易发展成干扰力矩,并产生附加谐波损耗,降低功率因数。

因此谐波问题引起了各有关方面的高度重视。

本文会在接下来的章节中分别介绍谐波的主要危害。

4.1谐波增加发、输、供和用电设备的附加损耗

谐波的存在会增加发、输、供和用电设备的附加损耗,使设备发热,降低设备的效率和利用率。

比如:

(1)对旋转电机的危害

谐波对同步电动机的危害主要是由于趋肤效应引起转子表面局部过热,降低使用寿命。

也能引起定子零部件过热。

当谐波电流频率接近于定子零部件固有频率时,能引起电机发生强烈震动。

对于感应电机来讲,会引起定子绕组过热,对于绕线电机也会引起转子过热,危及绝缘,缩短电动机使用寿命。

也可能引起机械震动,甚至损坏。

定子绕组中的正序和负序谐波电流分别产生正向和反向旋转磁场,从而降低电机效率。

谐波对旋转电机的另一项危害是产生附加的损耗和转矩。

磁滞、涡流等随着频率的增高使旋转电机的铁心和绕组中的附加损耗增加。

供电系统中电动机负荷约占总负荷的85%。

因此,谐波使附加损耗增加的影响最为显著。

电动机的出力一般不能按发热情况调整,由谐波引起电动机的发热效应按它能承受的谐波电压折算成等值的基波负序电压来考虑。

试验表明,额定出力下持续承受3%额定电压的负序电压时,电动机的绝缘寿命要减少一半。

因此,国际上一般建议在持续工作的条件下,电动机承受的负序电压不宜超过额定电压的2%。

谐波电流产生的谐波转矩对电动机的平均转矩影响不大,但谐波会产生显著的脉冲转矩,这种振荡力矩使汽轮发电机的转子元件发生扭振,并使汽轮机叶片产生疲劳循环。

(2)对变压器的危害

谐波电流除会引起变压器绕组附加发热外,还会使外壳、外层的钢片和某些紧固件发热,造成绝缘介质老化,缩短变压器使用寿命。

正序和负序谐波电流同样使变压器铁芯产生磁滞伸缩和噪声。

谐振情况下的谐波过电压也有可能造成变压器损坏。

谐波电流还会使变压器的铜耗增加,特别是3次及其倍数次谐波,对三角形连接的变压器会在其绕组中形成环流,使绕组过热;对全星形连接的变压器,当绕组中性点接地,而该侧电网中分

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 其它模板

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1