基于MATLAB的数字图像处理的设计与实现.docx
《基于MATLAB的数字图像处理的设计与实现.docx》由会员分享,可在线阅读,更多相关《基于MATLAB的数字图像处理的设计与实现.docx(26页珍藏版)》请在冰豆网上搜索。
基于MATLAB的数字图像处理的设计与实现
基于MATLAB的数字图像处理的设计与实现
摘要
数字图像处理是一门新兴技术,随着计算机硬件的发展,数字图像的实时处理已经成可能,由于数字图像处理的各种算法的出现,使得其处理速度越来越快,能更好的为人们服务。
数字图像处理是一种通过计算机采用一定的算法对图形图像进行处理的技术。
目的:
改善医学图像质量,使图像得到增强。
方法:
利用Matlab工具箱函数,采用灰度直方图均衡化和高通滤波的方法对一幅X线图像进行增强处理。
结果:
用直方图均衡化的算法,将原始图像密集的灰度分布变得比较稀疏,处理后的图像视觉效果得以改善。
高通滤波对于局部细节增强显著,高通滤波后使不易观察到的细节变得清晰。
结论:
使用Matlab工具箱大大简化了编程工作,为医学图像处理提供了一种技术平台。
经过直方图均衡化和高通滤波处理后的医学图像,视觉效果得到改善。
关键词:
MATLAB;直方图均衡化;高通滤波;图像增强
Abstract
Digitalimageprocessingisanemergingtechnology,withthedevelopmentofcomputerhardware,real—timedigitalimageprocessinghasbecomepossibleduetodigitalimageprocessingalgorithmstoappear,makingitfasterandfasterprocessingspeed,betterforpeopleservices.Digitalimageprocessingisusedbysomealgorithmscomputergraphicsimageprocessingtechnology.Objective:
Toimprovethequalityofmedicalimagebyenhancingthedetails。
Methods:
Twoprocessingmethods,thegray—levelhistogramequalizationandhighpassfilteringwereappliedtoenhanceanX—rayimagebyusingMatlabtoolboxfunctions。
Results:
Bythemeansofalgorithmhistogramequalization,thedensegray—leveldistributionoftheoriginalimagebecamesparse,andtheoutputimagewasrefined.Thehighpassfilteringstrengthenedthedistinctlyobserveddetails,whilethehighpassfilteringimprovedmorethelocaldetailofimage.Conclusion:
matlabtoolboxishelpfulforsimplifyingtheprogrammingandprovidesaplatformformedicalimageprocessing。
Thevisualimpactofmedicalimagesprocessedbyhistogramequalizationandhighpassfilteringimproves.
Keywords:
MATLAB;histogramequalization;Highpassfiltering;Image enhancement
1绪论
根据国内外的相关文献,研究和发展图像处理工具,改善医学图像质量是当今研究的热点。
图像增强就是一种基本的图像处理技术,增强的目的是对图像进行加工,以得到对医务工作者来说视觉效果更“好”更易于诊断的图像。
图像增强根据图像的模糊情况采用了各种特殊的技术突出图像整体或局部特征,常用的图像增强技术有灰度变换、直方图处理、平滑滤波(高斯平滑),中值滤波、剃度增强、拉普拉斯增强以及频率域的高通低通滤波等,这些算法运算量大、算术复杂、处理速度低。
针对这些问题,我们可以在Matlab环境中,利用Matlab提供的图像处理工具箱,简单快捷地得到统计数据,同时又可得到直观图示,其中Matlab工具箱中包括的图像处理函数涵盖了近期研究成果在内几乎所有的技术方法,都是由该领域内学术水平很高的专家编写的,功能强大,集成在一个便于用户使用的交互式环境之中,是易学、易用、高效的应用工具箱。
1.1课题研究目的及意义
数字图像处理(DigitalImageProcessing),就是利用数字计算机或者其他数字硬件,对从图像信息转换而得到的电信号进行某些数学运算,以提高图像的实用性。
例如从卫星图片中提取目标物的特征参数,三维立体断层图像的重建等。
总的来说,数字图像处理包括点运算、几何处理、图像增强、图像复原、图像形态学处理、图像编码、图像重建、模式识别等。
由于计算机处理能力的不断增强,数字图像处理学科在飞速发展的同时,也越来越广泛地向许多其他学科快速交叉渗透,使得图像作为信息获取以及信息的利用等方面也变得越来越重要。
目前数字图像处理的应用越来越广泛,已经渗透到工业、医疗保健、航空航天、军事等各个领域,在国民经济中发挥越来越大的作用.
MathWorks公司推出的MATLAB软件是学习数理知识的好帮手。
应用MATLAB友好的界面和丰富、实用、高效的指令及模块,可以使人较快地认识、理解图像处理的相关概念,逐步掌握图像信号处理的基本方法,进而能够解决相关的工程和科研中的问题。
图像是人类获取和交换信息的主要来源,因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。
随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大,已在国家安全、经济发展、日常生活中充当越来越重要的角色,对国计民生的作用不可低估。
1。
2国内外研究现状
数字图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息.数字图像处理作为一门学科大约形成于20世纪60年代初期。
早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的.图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。
首次获得实际成功应用的是美国喷气推进实验室(JPL)。
他们对航天探测器徘徊者7号在1964年发回的几千张月球照片使用了图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,获得了巨大的成功.随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,获得了非凡的成果,为人类登月创举奠定了坚实的基础,也推动了数字图像处理这门学科的诞生。
在以后的宇航空间技术,如对火星、土星等星球的探测研究中,数字图像处理技术都发挥了巨大的作用。
数字图像处理取得的另一个巨大成就是在医学上获得的成果。
1972年英国EMI公司工程师Housfield发明了用于头颅诊断的X射线计算机断层摄影装置,也就是我们通常所说的CT(ComputerTomograph).CT的基本方法是根据人的头部截面的投影,经计算机处理来重建截面图像,称为图像重建.1975年EMI公司又成功研制出全身用的CT装置,获得了人体各个部位鲜明清晰的断层图像。
1979年,这项无损伤诊断技术获得了诺贝尔奖,说明它对人类作出了划时代的贡献.
与此同时,图像处理技术在许多应用领域受到广泛重视并取得了重大的开拓性成就,属于这些领域的有航空航天、生物医学工程、工业检测、机器人视觉、公安司法、军事制导、文化艺术等,使图像处理成为一门引人注目、前景远大的新型学科。
随着图像处理技术的深入发展,从70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展。
人们已开始研究如何用计算机系统解释图像,实现类似人类视觉系统理解外部世界,这被称为图像理解或计算机视觉。
很多国家,特别是发达国家投入更多的人力、物力到这项研究,取得了不少重要的研究成果。
其中代表性的成果是70年代末MIT的Marr提出的视觉计算理论,这个理论成为计算机视觉领域其后十多年的主导思想。
图像理解虽然在理论方法研究上已取得不小的进展,但它本身是一个比较难的研究领域,存在不少困难,因人类本身对自己的视觉过程还了解甚少,因此计算机视觉是一个有待人们进一步探索新的领域.
2数字图像处理的简介
2.1什么是数字图像
所谓数字图像就是把传统图像的画面分割成如图2—1所示的被成为像素(pictureelement,简称pixel)的小的离散点,各像素的灰度值也是用离散值即整数值来表示的。
数字图像(digitalimagine)和传统的图像即模拟图像(picture)是有差别的。
图2—1数字图像
为了从一般的照片,景物等模拟图像中得到数字图像,需要对传统的模拟图像进行采样与量化两种操作(二者统称为数字化)。
1.采样
采样(sampling)就是把在时间上和空间上连续的图像变成离散点(采样点,即像素)的集合的一种操作。
图像基本上是在二维平面上连续分布的信息形式要把它输入到计算机中,首先要把二维信号变成一维信号,因此要进行扫描(scanning)。
最常用的扫描方法是在二维平面上按一定间隔顺序地从上方顺序地沿水平方向的直线(扫描线)扫描,从而取出浓淡值(灰度值)的线扫描(Laster扫描)。
对于由此得到的一维信号,通过求出每一特定间隔的值,可以得到离散的信号。
对于运动图像除进行水平,垂直两个方向的扫描以外,还有进行时间轴上的扫描.
通过采样,如设横向的像素数为M,纵向的像素数为N,则画面的大小可以表示为“M*N”个像素。
2.量化
经过采样,图像被分解成在时间上和空间上离散分布的像素,但是像素的值(灰度值)还是连续值。
像素的值,是指白色—灰色-黑色的浓淡值,有时候也指光的强度(亮度)值或灰度值。
把这些连续的浓淡值或灰度值变为离散的值(整数值)的操作就是量化.
如果把这些连续变化的值(灰度值)量化为8bit,则灰度值被分成0-2552的256个级别,分别对应于各个灰度值的浓淡程度,叫做灰度等级或灰度标度.
在0-255的值对应于白-黑的时候,有以0为白,255为黑的方法,也有以0为黑,255为白的方法,这取决于图像的输入方法以及用什么样的观点对图像进行处理等,这是在编程时应特别注意的问题。
但在只有黑白二值的二值图像的情形,一般设0为白,1为黑。
对连续的灰度值赋予量化级的,即灰度值方法有:
均匀量化(uniformquantization),线性量化(linerquantization),对数量化,MAX量化,锥形量化(taperedquantization)等。
3.采样、量化和图像细节的关系
上面的数字化过程,需要确定数值N和灰度级的级数K。
在数字图像处理中,一般都取成2的整数幂,即:
(2.1)
(2。
2)
一幅数字图像在计算机中所占的二进制存储位数b为:
(2.3)
例如,灰度级为256级(m=8)的512×512的一幅数字图像,需要大约210万个存储位.随着N和m的增加,计算机所需要的存储量也随之迅速增加。
由于数字图像是连续图像的近似,从图像数字化的过程可以看到。
这种近似的程度主要取决于采样样本的大小和数量(N值)以及量化的级数K(或m值)。
N和K的值越大,图像越清晰。
2.2数字图像处理概述
2.2。
1基本概念
数字图像处理(DigitalImageProcessing)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。
数字图像处理的产生和迅速发展主要受三个因素的影响:
一是计算机的发展;二是数学的发展(特别是离散数学理论的创立和完善);三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的增长。
2。
2。
2研究内容
数字图像处理主要研究的内容有以下几个方面:
(1)图像变换。
由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。
因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅里叶变换可在频域中进行数字滤波处理)。
目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用.
(2)图像编码压缩。
图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。
压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。
编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术.
(3)图像增强和复原。
图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等.图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。
如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。
图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立“降质模型”,再采用某种滤波方法,恢复或重建原来的图像。
(4)图像分割。
图像分割是数字图像处理中的关键技术之一。
图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础.虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。
因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一。
(5)图像描述。
图像描述是图像识别和理解的必要前提。
作为最简单的二值图像可采用其几何特性描述物体的特性,一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。
对于特殊的纹理图像可采用二维纹理特征描述。
随着图像处理研究的深入发展,已经开始进行三维物体描述的研究,提出了体积描述、表面描述、广义圆柱体描述等方法。
(6)图像分类(识别).图像分类(识别)属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类.图像分类常采用经典的模式识别方法,有统计模式分类和句法(结构)模式分类,近年来新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中也越来越受到重视。
2。
2.3基本特点
(1)数字图像处理的信息大多是二维信息,处理信息量很大。
如一幅256×256低分辨率黑白图像,要求约64kbit的数据量;对高分辨率彩色512×512图像,则要求768kbit数据量;如果要处理30帧/秒的电视图像序列,则每秒要求500kbit~22.5Mbit数据量。
因此对计算机的计算速度、存储容量等要求较高.
(2)数字图像处理占用的频带较宽。
与语言信息相比,占用的频带要大几个数量级。
如电视图像的带宽约5。
6MHz,而语音带宽仅为4kHz左右。
所以在成像、传输、存储、处理、显示等各个环节的实现上,技术难度较大,成本亦高,这就对频带压缩技术提出了更高的要求。
(3)数字图像中各个像素是不独立的,其相关性大。
在图像画面上,经常有很多像素有相同或接近的灰度。
就电视画面而言,同一行中相邻两个像素或相邻两行间的像素,其相关系数可达0。
9以上,而相邻两帧之间的相关性比帧内相关性一般说还要大些。
因此,图像处理中信息压缩的潜力很大。
(4)由于图像是三维景物的二维投影,一幅图象本身不具备复现三维景物的全部几何信息的能力,很显然三维景物背后部分信息在二维图像画面上是反映不出来的.因此,要分析和理解三维景物必须作合适的假定或附加新的测量,例如双目图像或多视点图像。
在理解三维景物时需要知识导引,这也是人工智能中正在致力解决的知识工程问题。
(5)数字图像处理后的图像一般是给人观察和评价的,因此受人的因素影响较大。
由于人的视觉系统很复杂,受环境条件、视觉性能、人的情绪爱好以及知识状况影响很大,作为图像质量的评价还有待进一步深入的研究.另一方面,计算机视觉是模仿人的视觉,人的感知机理必然影响着计算机视觉的研究。
例如,什么是感知的初始基元,基元是如何组成的,局部与全局感知的关系,优先敏感的结构、属性和时间特征等,这些都是心理学和神经心理学正在着力研究的课题。
2.2.4主要应用
计算机图像处理和计算机、多媒体、智能机器人、专家系统等技术的发展紧密相关。
近年来计算机识别、理解图像的技术发展很快,也就是图像处理的目的除了直接供人观看(如医学图像是为医生观看作诊断)外,还进一步发展了与计算机视觉有关的应用,如邮件自动分检,车辆自动驾驶等。
下面仅罗列了一些典型应用实例,而实际应用更广。
(1)在生物医学中的应用:
主要包括显微图像处理;DNA显示分析;红、白血球分析计数;虫卵及组织切片的分析;癌细胞的识别;染色体分析等等。
(2)遥感航天中的应用:
军事侦察、定位、导航、指挥等应用;多光谱卫星图像分析;地形、地图、国土普查;地质、矿藏勘探;天文、太空星体的探测及分析等。
(3)工业应用:
CAD和CAM技术用于模具、零件制造、服装、印染业;零件、产品无损检测,焊缝及内部缺陷检查;交通管制、机场监控;火车车皮识别等.
(4)军事公安领域中的应用:
巡航导弹地形识别;指纹自动识别;警戒系统及自动火炮控制;反伪装侦察;手迹、人像、印章的鉴定识别;过期档案文字的复原;集装箱的不开箱检查等。
(5)其他应用:
图像的远距离通信;多媒体计算机系统及应用;电视电话;服装试穿显示;理发发型预测显示;电视会议;办公自动化、现场视频管理等。
2.3图像处理文件格式
2.3。
1MATLAB图像文件格式
MATLAB支持以下几种图像文件格式:
(1)PCX(WindowsPaintbrush)格式.可处理1,4,8,16,24位等图像数据。
文件内容包括:
文件头(128字节),图像数据、扩展颜色映射表数据。
(2)BMP(WindowsBitmap)格式。
有1,4,8,24位非压缩图像,8位RLE(Run—lengthEncoded)图像。
文件内容包括:
文件头(一个BITMAPFILEHEADER数据结构),位图信息数据块(位图信息头BITMAPINFOHEADER和一个颜色表)和图像数据。
(3)HDF(HierarchicalDataFormat)格式.有8位,24位光栅数据集。
(4)JPEG(JointPhotographicExpertsGroup)格式,是一种成为联合图像专家组的图像压缩格式。
(5)TIFF(TaggedImageFileFormat)格式。
处理1,4,8,24位非压缩图像,1,4,8,24位packbit压缩图像,一位CCITT压缩图像等。
文件内容包括:
文件头,参数指针表与参数域,参数数据表和图像数据四部分。
(6)XWD(XWindowsDump)格式。
1,8位Zpixmaps,XYbitmaps,1位XYpixmaps。
(7)PNG(PortableNetworkGraphics)格式。
2。
3.2图像类型
MATLAB中,一幅图像可能包含一个数据矩阵,也可能包含一个颜色映射表矩阵。
MATLAB中有四种基本的图像类型:
(1)索引图像
索引图像包括图像矩阵与颜色图数组,其中,颜色图是按图像中颜色值进行排序后的数组.对于每个像素,图像矩阵包含一个值,这个值就是颜色图中的索引。
颜色图为m*3双精度值矩阵,各行分别指定红绿蓝(RGB)单色值。
Colormap=[R,G,B],R,G,B为值域为[0,1]的实数值。
图像矩阵与颜色图的关系依赖于图像矩阵是双精度型还是uint8(无符号8位整型)类型。
如果图像矩阵为双精度类型,第一点的值对应于颜色图的第一行,第二点对应于颜色图的第二行,依次类推。
如果图像矩阵是uint8,有一个偏移量,第0点值对应于颜色图的第一行,第一点对应于第二行,依次类推;uint8长用于图形文件格式,它支持256色。
(2)灰度图像
在MATLAB中,灰度图像是保存在一个矩阵中的,矩阵中的每一个元素代表一个像素点。
矩阵可以是双精度类型,其值域为[0,1];也可以为uint8类型,其数据范围为[0,255]。
矩阵的每个元素代表不同的亮度或灰度级。
(3)二进制图像
二进制图像中,每个点为两离散值中的一个,这两个值代表开或关。
二进制图像保存在一个由二维的由0(关)和1(开)组成的矩阵中.从另一个角度讲,二进制图像可以看成为一个仅包括黑与白的灰度图像,也可以看作只有两种颜色的索引图像.
二进制图像可以保存为双精度或uint8类型的双精度数组,显然使用uint8类型更节省空间。
在图像处理工具箱中,任何一个返回二进制图像的函数都是以uint8类型逻辑数组来返回的.
(4)RGB图像
与索引图像一样,RGB图像分别用红,绿,蓝三个亮度值为一组,代表每个像素的颜色。
与索引图像不同的是,这些亮度值直接存在图像数组中,而不是存放在颜色图中.图像数组为M*N*3,M,N表示图像像素的行列数.
3MATLAB基本知识介绍
3。
1MATLAB的概述
MATLAB是MatrixLaboratory(“矩阵实验室")的缩写,是由美国MathWorks公司开发的集数值计算、符号计算和图形可视化三大基本功能于一体的,功能强大、操作简单的语言。
是国际公认的优秀数学应用软件之一。
MATLAB的基本数据单位是矩阵,它的指令表达式与数学,工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完相同的事情简捷得多。
MATLAB包括拥有数百个内部函数的主包和三十几种工具包(Toolbox)。
工具包又可以分为功能性工具包和学科工具包.功能工具包用来扩充MATLAB的符号计算,可视化建模仿真,文字处理及实时控制等功能.学科工具包是专业性比较强的工具包,控制工具包,信号处理工具包,通信工具包等都属于此类.
开放性使MATLAB广受用户欢迎.除内部函数外,所有MATLAB主包文件和各种工具包都是可读可修改的文件,用户通过对源程序的修改或加入自己编写程序构造新的专用工具包.
3。
2MATLAB产生的历史背景
在70年代中期,CleveMoler博士和其同事在美国国家科学基金的资助下开发了调用EISPACK和LINPACK的FORTRAN子程序库。
EISPACK是特征值求解的FOETRAN程序库,LINPACK是解线性方程的程序库。
在当时,这两个程序库代表矩阵运算的最高水平。
到70年代后期,身为美国NewMexico大学计算机系系主任的CleveMoler,在给学生讲授线性代数课程时,想教学生使用EISPACK和LINPACK程序库,但他发现学生用FORTRAN编写接口程序很费时间,于是他开始自己动手,利用业余时间为学生编写EISPACK和LINPACK的接口程序。
CleveMoler给这个接口程序取名为MATLAB,该名为矩阵(matrix)和实验室(labotatory)两个英文单词的前三个字母的组合。
在以后的数年里,MATLAB在多所大学里作为教学辅助软件使用,并作为面向大众的免费软件广为流传。
1983年春天,CleveMoler到Standford大学讲学,MATLAB