烟台市数学中考试题解析.docx
《烟台市数学中考试题解析.docx》由会员分享,可在线阅读,更多相关《烟台市数学中考试题解析.docx(33页珍藏版)》请在冰豆网上搜索。
烟台市数学中考试题解析
山东省烟台市2013年中考数学试卷
一、选择题(本题共12小题,每小题3分,满分36分)
1.(3分)(2013•烟台)﹣6的倒数是( B )
2.(3分)(2013•烟台)以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是( B )
A.
B.
C.
D.
3.(3分)(2013•烟台)“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是人一年的口粮.将用科学记数法表示为(C )
A.
2.1×109
B.
0.21×109
C.
2.1×108
D.
21×107
4.(3分)(2013•烟台)下列水平放置的几何体中,俯视图不是圆的是( C )
A.
B.
C.
D.
5.(3分)(2013•烟台)下列各运算中,正确的是( B )
A.
3a+2a=5a2
B.
(﹣3a3)2=9a6
C.
a4÷a2=a3
D.
(a+2)2=a2+4
6.(3分)(2012•青岛)如图,将四边形ABCD
先向左平移3个单位,再向上平移2个单位,
那么点A的对应点A′的坐标是( B )
A.
(6,1)
B.
(0,1)
C.
(0,﹣3)
D.
(6,﹣3)
7.(3分)(2013•烟台)一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为(D )
A.
5
B.
5或6
C.
5或7
D.
5或6或7
考点:
多边形内角与外角.
分析:
首先求得内角和为720°的多边形的边数,即可确定原多边形的边数.
解答:
解:
设内角和为720°的多边形的边数是n,则(n﹣2)•180=720,解得:
n=6.则原多边形的边数为
5或6或7.故选.
点评:
本题考查了多边形的内角和定理,理解分三种情况是关键.
8.(3分)(2013•烟台)将正方形图1作如下操作:
第1次:
分别连接各边中点如图2,得到5个正方形;第2次:
将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,根据以上操作,若要得到2013个正方形,则需要操作的次数是( )
A.
502
B.
503
C.
504
D.
505
考点:
规律型:
图形的变化类.
分析:
根据正方形的个数变化得出第n次得到2013个正方形,则4n+1=2013,求出即可.
解答:
解:
∵第1次:
分别连接各边中点如图2,得到4+1=5个正方形;
第2次:
将图2左上角正方形按上述方法再分割如图3,得到4×2+1=9个正方形…,
以此类推,根据以上操作,若第n次得到2013个正方形,则4n+1=2013,解得:
n=503.故选:
B.
点评:
此题主要考查了图形的变化类,根据已知得出正方形个数的变化规律是解题关键.
9.(3分)(2013•烟台)已知实数a,b分别满足a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,则
的值是( )
A.
7
B.
﹣7
C.
11
D.
﹣11
考点:
根与系数的关系.
专题:
计算题.
分析:
根据已知两等式得到a与b为方程x2﹣6x+4=0的两根,利用根与系数的关系求出a+b与ab的值,所求式子通分并利用同分母分式的加法法则计算,再利用完全平方公式变形,将a+b与ab的值代入计算可求出值.
解答:
解:
根据题意得:
a与b为方程x2﹣6x+4=0的两根,
∴a+b=6,ab=4,
则原式=
=
=7.故选A
点评:
此题考查了一元二次方程根与系数的关系,熟练掌握根与系数的关系是解本题的关键.
10.(3分)(2013•烟台)如图,已知⊙O1的半径为1cm,
⊙O2的半径为2cm,将⊙O1,⊙O2放置在直线l上,如果⊙O1在
直线l上任意滚动,那么圆心距O1O2的长不可能
是( )A6cmB3cmC2cmD0.5cm
考点:
圆与圆的位置关系.
分析:
根据在滚动的过程中两圆的位置关系可以确定圆心距的关系.
解答:
解:
∵⊙O1的半径为1cm,⊙O2的半径为2cm,∴当两圆内切时,圆心距为1,
∵⊙O1在直线l上任意滚动,∴两圆不可能内含,∴圆心距不能小于1,选D
点评:
本题考查了两圆的位置关系,本题中两圆不可能内含.
11.(3分)(2013•烟台)如图是二次函数y=ax2+bx+c
图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).
下列说法:
①abc<0;②2a﹣b=0;③4a+2b+c<0;
④若(﹣5,y1),(,y2)是抛物线上两点,则
y1>y2.其中说法正确的是( )
A.
①②
B.
②③
C.
①②④
D.
②③④
考点:
二次函数图象与系数的关系.
分析:
根据图象得出a>0,b=2a>0,c<0,即可判断①②;把x=2代入抛物线的解析式即可判断③,求出点(﹣5,y1)关于对称轴的对称点的坐标是(3,y1),根据当x>﹣1时,y随x的增大而增大即可判断④.
解答:
解:
∵二次函数的图象的开口向上,∴a>0,
∵二次函数的图象y轴的交点在y轴的负半轴上,∴c<0,
∵二次函数图象的对称轴是直线x=﹣1,∴﹣
=﹣1,∴b=2a>0,∴abc<0,∴①正确;
2a﹣b=2a﹣2a=0,∴②正确;
∵二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).
∴与x轴的另一个交点的坐标是(1,0),
∴把x=2代入y=ax2+bx+c得:
y=4a+2b+c>0,∴③错误;
∵二次函数y=ax2+bx+c图象的对称轴为x=﹣1,∴点(﹣5,y1)关于对称轴的对称点的坐标是(3,y1),
根据当x>﹣1时,y随x的增大而增大,∵<3,∴y2<y1,∴④正确;故选C.
点评:
本题考查了二次函数的图象与系数的关系的应用,题目比较典型,主要考查学生的理解能力和辨析能力.
12.(3分)(2013•烟台)如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是( )
A.
AE=6cm
B.
sin∠EBC=
C.
当0<t≤10时,y=t2
D.
当t=12s时,△PBQ是等腰三角形
考点:
动点问题的函数图象.
分析:
由图2可知,在点(10,40)至点(14,40)区间,△BPQ的面积不变,因此可推论BC=BE,由此分析动点P的运动过程如下:
(1)在BE段,BP=BQ;持续时间10s,则BE=BC=10;y是t的二次函数;
(2)在ED段,y=40是定值,持续时间4s,则ED=4;
(3)在DC段,y持续减小直至为0,y是t的一次函数.
解答:
解:
(1)结论A正确.理由如下:
分析函数图象可知,BC=10cm,ED=4cm,故AE=AD﹣ED=BC﹣ED=10﹣4=6cm;
(2)结论B正确.理由如下:
如答图1所示,连接EC,过点E作EF⊥BC于点F,
由函数图象可知,BC=BE=10cm,S△BEC=40=BC•EF=×10×EF,∴EF=8,
∴sin∠EBC=
=
=;
(3)结论C正确.理由如下:
如答图2所示,过点P作PG⊥BQ于点G,∵BQ=BP=t,
∴y=S△BPQ=BQ•PG=BQ•BP•sin∠EBC=t•t•=t2.
(4)结论D错误.理由如下:
当t=12s时,点Q与点C重合,点P运动到ED的中点,设为N,如答图3所示,连接NB,NC.
此时AN=8,ND=2,由勾股定理求得:
NB=
,NC=
,
∵BC=10,∴△BCN不是等腰三角形,即此时△PBQ不是等腰三角形
.
点评:
本题考查动点问题的函数图象,需要结合几何图形与函数图象,认真分析动点的运动过程.突破点在于正确判断出BC=BE=10cm.
二、填空题(本题共6小题,每小题3分,满分18分)
13.(3分)(2013•烟台)分解因式:
a2b﹣4b3= b(a+2b)(a﹣2b) .
考点:
提公因式法与公式法的综合运用.
分析:
先提取公因式b,再根据平方差公式进行二次分解.平方差公式:
a2﹣b2=(a+b)(a﹣b).
解答:
解:
a2b﹣4b3=b(a2﹣4b2)=b(a+2b)(a﹣2b).故答案为b(a+2b)(a﹣2b).
点评:
本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.
14.(3分)(2013•烟台)不等式
的最小整数解是 x=3 .
考点:
一元一次不等式组的整数解.
分析:
先求出一元一次不等式组的解集,再根据x是整数得出最小整数解.
解答:
解:
,
解不等式①,得x≥1,解不等式②,得x>2,
所以不等式组的解集为x>2,所以最小整数解为3.故答案为:
x=3.
点评:
此题考查的是一元一次不等式组的整数解,正确解出不等式组的解集是解决本题的关键.求不等式组的解集,应遵循以下原则:
同大取较大,同小取较小,小大大小中间找,大大小小解不了.
15.(3分)(2013•烟台)如图,四边形ABCD是等腰梯形,
∠ABC=60°,若其四边满足长度的众数为5,平均数为
,
上、下底之比为1:
2,则BD=
.
考点:
等腰梯形的性质;算术平均数;众数.
分析:
设梯形的四边长为5,5,x,2x,根据平均数求出四边长,求出△BDC是直角三角形,根据勾股定理求出
解答:
解:
设梯形的四边长为5,5,x,2x,
则
=
,x=5,
则AB=CD=5,AD=5,BC=10,
∵AB=AD,∴∠ABD=∠ADB,
∵AD∥BC,∴∠ADB=∠DBC,∴∠ABD=∠DBC,
∵∠ABC=60°,∴∠DBC=30°,
∵等腰梯形ABCD,AB=DC,∴∠C=∠ABC=60°,∴∠BDC=90°,
∴在Rt△BDC中,由勾股定理得:
BD=
=5
,故答案为:
5
.
点评:
本题考查了梯形性质,平行线性质,勾股定理,三角形内角和定理,等腰三角形的性质等知识点的应用,关键是求出BC、DC长和得出三角形DCB是等腰三角形.
16.(3分)(2013•烟台)如图,▱ABCD的周长为36,
对角线AC,BD相交于点O.点E是CD的中点,BD=12,
则△DOE的周长为 15 .
考点:
三角形中位线定理;平行四边形的性质.
分析:
根据平行四边形的对边相等和对角线互相平分可得,OB=OD,又因为E点是CD的中点,可得OE是△BCD的中位线,可得OE=BC,所以易求△DOE的周长.
解答:
解:
∵▱ABCD的周长为36,∴2(BC+CD)=36,则BC+CD=18
∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=BD=6.
又∵点E是CD的中点,∴OE是△BCD的中位线,DE=CD,∴OE=BC,
∴△DOE的周长=OD+OE+DE=BD+(BC+CD)=6+9=15,即△DOE的周长为15.故答案是:
15.
点评:
本题考查了三角形中位线定理、平行四边形的性质.解题时,利用了“平行四边形对角线互相平分”、“平行四边形的对边相等”的性质.
17.(3分)(2013•烟台)如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为 108 度.
考点:
线段垂直平分线的性质;等腰三角形的性质;翻折变换(折叠问题).
分析:
连接OB、OC,根据角平分线的定义求出∠BAO,根据等腰三角形两底角相等求出∠ABC,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OB,根据等边对等角可得∠ABO=∠BAO,再求出∠OBC,然后判断出点O是△ABC的外心,根据三角形外心的性质可得OB=OC,再根据等边对等角求出∠OCB=∠OBC,根据翻折的性质可得OE=CE,然后根据等边对等角求出∠COE,再利用三角形的内角和定理列式计算即可得解.
解答:
解:
如图,连接OB、OC,∵∠BAC=54°,AO为∠BAC的平分线,∴∠BAO=∠BAC=×54°=27°,
又∵AB=AC,∴∠ABC=(180°﹣∠BAC)=(180°﹣54°)=63°,
∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=27°∴∠OBC=∠ABC﹣∠ABO=63°﹣27°=36°
∵DO是AB的垂直平分线,AO为∠BAC的平分线,
∴点O是△ABC的外心,∴OB=OC,∴∠OCB=∠OBC=36°,
∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE,∴∠COE=∠OCB=36°,
在△OCE中,∠OEC=180°﹣∠COE﹣∠OCB=180°﹣36°﹣36°=108°.故答案为:
108.
点评:
本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,难度较大,作辅助线,构造出等腰三角形是解题的关键.
18.(3分)(2013•烟台)如图,正方形ABCD的边长为4,点E在BC上,四边形EFGB也是正方形,以B为圆心,BA长为半径画
,连结AF,CF,则图中阴影部分面积为 4π .
考点:
正方形的性质;整式的混合运算.
分析:
设正方形EFGB的边长为a,表示出CE、AG,然后根据阴影部分的面积=S扇形ABC+S正方形EFGB+S△CEF﹣S△AGF,列式计算即可得解.
解答:
解:
设正方形EFGB的边长为a,则CE=4﹣a,AG=4+a,
阴影部分的面积=S扇形ABC+S正方形EFGB+S△CEF﹣S△AGF
=
+a2+a(4﹣a)﹣a(4+a)=4π+a2+2a﹣a2﹣2a﹣a2=4π.故答案为:
4π.
点评:
本题考查了正方形的性质,整式的混合运算,扇形的面积计算,引入小正方形的边长这一中间量是解题的关键.
三、解答题(本大题共8个小题,满分46分)
19.(6分)(2013•烟台)先化简,再求值:
,其中x满足x2+x﹣2=0.
考点:
分式的化简求值.
专题:
计算题.
分析:
先根据分式混合运算的法则把原式进行化简,再求出x的值,把x的值代入进行计算即可.
解答:
解:
原式=
•
=
•
=
,
由x2+x﹣2=0,解得x1=﹣2,x2=1,∵x≠1,∴当x=﹣2时,原式=
=.
点评:
本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.
20.(6分)(2013•烟台)如图,一艘海上巡逻船在A地巡航,这时接到B地海上指挥中心紧急通知:
在指挥中心北偏西60°方向的C地,有一艘渔船遇险,要求马上前去救援.此时C地位于北偏西30°方向上,A地位于B地北偏西75°方向上,A、B两地之间的距离为12海里.求A、C两地之间的距离(参考数据:
≈1.41,
≈1.73,
≈2.45,结果精到0.1)
考点:
解直角三角形的应用-方向角问题.
分析:
过点B作BD⊥CA交CA延长线于点D,根据题意可得∠ACB和∠ABC的度数,然后根据三角形外角定理求出∠DAB的度数,已知AB=12海里,可求出BD、AD的长度,在Rt△CBD中,解直角三角形求出CD的长度,继而可求出A、C之间的距离.
解答:
解:
过点B作BD⊥CA交CA延长线于点D,
由题意得,∠ACB=60°﹣30°=30°,
∠ABC=75°﹣60°=15°,
∴∠DAB=∠DBA=45°,
在Rt△ABD中,AB=12,∠DAB=45°,
∴BD=AD=ABcos45°=6
,
在Rt△CBD中,CD=
=6
,
∴AC=6
﹣6
≈6.2(海里).
答:
A、C两地之间的距离为6.2海里.
点评:
本题考查了解直角三角形的知识,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度,难度一般.
21.(7分)(2013•烟台)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线y=﹣x+3交AB,BC分别于点M,N,反比例函数y=的图象经过点M,N.
(1)求反比例函数的解析式;
(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.
考点:
反比例函数与一次函数的交点问题.
分析:
(1)求出OA=BC=2,将y=2代入y=﹣x+3求出x=2,得出M的坐标,把M的坐标代入反比例函数的解析式即可求出答案;
(2)求出四边形BMON的面积,求出OP的值,即可求出P的坐标.
解答:
解:
(1)∵B(4,2),四边形OABC是矩形,
∴OA=BC=2,
将y=2代入y=﹣x+3得:
x=2,
∴M(2,2),
把M的坐标代入y=得:
k=4,
∴反比例函数的解析式是y=;
(2)∵S四边形BMON=S矩形OABC﹣S△AOM﹣S△CON
=4×2﹣4=4,
由题意得:
OP×AM=4,
∵AM=2,
∴OP=4,
∴点P的坐标是(0,4)或(0,﹣4).
点评:
本题考查了用待定系数法求反比例函数的解析式,一次函数与反比例函数的交点问题,三角形的面积,矩形的性质等知识点的应用,主要考查学生应用性质进行计算的能力,题目比较好,难度适中.
22.(9分)(2013•烟台)今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:
A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.
对雾霾了解程度的统计表:
对雾霾的了解程度
百分比
A.非常了解
5%
B.比较了解
m
C.基本了解
45%
D.不了解
n
请结合统计图表,回答下列问题.
(1)本次参与调查的学生共有 400 人,m= 15% ,n= 35% ;
(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是 126 度;
(3)请补全图1示数的条形统计图;
(4)根据调查结果,学校准备开展关于雾霾知识竞赛,某班要从“非常了解”态度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:
把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.
考点:
游戏公平性;扇形统计图;条形统计图;列表法与树状图法.
分析:
(1)根据“基本了解”的人数以及所占比例,可求得总人数;在根据频数、百分比之间的关系,可得m,n的值;
(2)根据在扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心的度数与360°的比可得出统计图中D部分扇形所对应的圆心角;
(3)根据D等级的人数为:
400×35%=140;可得(3)的答案;
(4)用树状图列举出所有可能,进而得出答案.
解答:
解:
(1)利用条形图和扇形图可得出:
本次参与调查的学生共有:
180÷45%=400;
m=
×100%=15%,n=1﹣5%﹣15%﹣45%=35%;
(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是:
360°×35%=126°;
(3)∵D等级的人数为:
400×35%=140;
如图所示:
(4)列树状图得:
;
所以从树状图可以看出所有可能的结果有12种,数字之和为奇数的有8种,
则小明参加的概率为:
P=
=,
小刚参加的概率为:
P=
=,
故游戏规则不公平.故答案为:
400,15%,35%;126
点评:
此题主要考查了游戏公平性,涉及扇形统计图的意义与特点,即可以比较清楚地反映出部分与部分、部分与整体之间的数量关系.
23.(8分)(2013•烟台)烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3000元以相同的进价购进质量相同的苹果.甲超市销售方案是:
将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价10%销售.乙超市的销售方案是:
不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2100元(其它成本不计).问:
(1)苹果进价为每千克多少元?
(2)乙超市获利多少元?
并比较哪种销售方式更合算.
考点:
分式方程的应用.
分析:
(1)先设苹果进价为每千克x元,根据两超市将苹果全部售完,其中甲超市获利2100元列出方程,求出x的值,再进行检验即可求出答案;
(2)根据
(1)求出每个超市苹果总量,再根据大、小苹果售价分别为10元和5.5元,求出乙超市获利,再与甲超市获利2100元相比较即可.
解答:
解:
(1)设苹果进价为每千克x元,根据题意得:
400x+10%x(
﹣400)=2100,
解得:
x=5,
经检验x=5是原方程的解,
答:
苹果进价为每千克5元.
(2)由
(1)得,每个超市苹果总量为:
=600(千克),
大、小苹果售价分别为10元和5.5元,
则乙超市获利600×(
﹣5)=1650(元),
∵甲超市获利2100元,
∴甲超市销售方式更合算.
点评:
此题考查了分式方程的应用,关键是读懂题意,找出题目中的等量关系,根据两超市将苹果全部售完,其中甲超市获利2100元列出方程,解方程时要注意检验.
24.(2013•烟台)如图,AB是⊙O的直径,BC是⊙O的切线,连接AC交⊙O于点D,E为
上一点,连结AE,BE,BE交AC于点F,且AE2=EF•EB.
(1)求证:
CB=CF;
(2)若点E到弦AD的距离为1,cos∠C=,求⊙O的半径.
考点:
切线的性质;相似三角形的判定与性质.
分析:
(1)如图1,通过相似三角形(△AEF∽△AEB)的对应角相等推知,∠1=∠EAB;又由弦切角定理、对顶角相等证得∠2=∠3;最后根据等角对等边证得结论;
(2)如图2,连接OE交AC于点G,设⊙O的半径是r.根据
(1)中的相似三角形的性质证得∠4=∠5,所以由“圆周角、弧、弦间的关系”推知点E是弧AD的中点,则OE⊥AD;然后通过解直角△ABC求得cos∠C=sin∠GAO=
=,则以求r的值.
解答:
(1)证明:
如图1,
∵AE2=EF•EB,
∴
=
.
又