acousticsworkshop1ia.docx

上传人:b****8 文档编号:30129609 上传时间:2023-08-05 格式:DOCX 页数:19 大小:84.94KB
下载 相关 举报
acousticsworkshop1ia.docx_第1页
第1页 / 共19页
acousticsworkshop1ia.docx_第2页
第2页 / 共19页
acousticsworkshop1ia.docx_第3页
第3页 / 共19页
acousticsworkshop1ia.docx_第4页
第4页 / 共19页
acousticsworkshop1ia.docx_第5页
第5页 / 共19页
点击查看更多>>
下载资源
资源描述

acousticsworkshop1ia.docx

《acousticsworkshop1ia.docx》由会员分享,可在线阅读,更多相关《acousticsworkshop1ia.docx(19页珍藏版)》请在冰豆网上搜索。

acousticsworkshop1ia.docx

acousticsworkshop1ia

Note:

ThisworkshopprovidesinstructionsintermsoftheABAQUSGUIinterface.IfyouwishtousetheABAQUSKeywordsinterfaceinstead,pleaseseethe“Keywords”versionoftheseinstructions.

PleasecompleteeithertheKeywordsorInteractiveversionofthisworkshop.

Goals

Whenyoucompletethisworkshop,youwillbeableto:

Determinethenaturalfrequenciesofanacousticdomain.

Determinethesteady-statedynamicresponseofanacousticsystem.

Defineaclassicalacousticplane-waveabsorbingboundary.

Defineacousticexcitationloads.

Viewrealandimaginarycomponentsofacousticpressure.

Createpathplotsofacousticoutputdata.

ABAQUS

Introduction

Asimpleacousticmodelofasectionofairductwillbeusedtointroducesomeofthebasicanalysistechniquesthatcanbeappliedtoanacousticmesh.Inthisworkshopyouwilladdimportantmodelingdetailstocompletethesuppliedmodeldatabasewhichalreadycontainsbasicmodelingdatasuchasgeometry,mesh,andmaterialdefinitions,fortheairductsectionshowninFigureW1–1.Themodelforthisworkshoprepresentsonlytheairinsidetheduct.Theacousticnaturalboundaryconditionofinfiniteimpedanceatameshboundaryimpliesrigidductwalls.Youwillperformnaturalfrequencyextractionanalyseswithdifferentsetsofacousticboundaryconditionsassignedtotheendsoftheduct.Youwillthenperformaseriesofsteady-statedynamicresponseanalysesonthemodelusingdifferentexcitationmethods.Thesteady-statedynamicanalyseswillalsoincludethedefinitionofacousticplane-waveabsorbingboundaryimpedanceatoneendoftheducttoinvestigatepostprocessingoftravelingwavesforfrequency-domainsolutions.

FigureW1–1Modelofasimpleairductsection.

Preliminaries

1.Entertheworkingdirectoryforthisworkshop:

../acoustics/interactive/workshop1

2.Runthescriptws_acoustic_duct.pyusingthefollowingcommand:

abaquscaestartup=ws_acoustic_duct.py

TheabovecommandcreatesanABAQUS/CAEdatabasenamedduct.caeinthecurrentdirectory.Thegeometry,materialandmeshdefinitionsfortheairductsectionmodelshowninFigureW1–1areincludedinthedatabase.Theairductsectionis4.25mlongandhasarectangularcross-sectionthatis0.2mby0.125m.Theacousticmediumisairwithadensityof1.225kg/m3andasoundspeedof340m/s.Thus,theeffectivebulkmodulusis141610Pa.Themodelisdesignedtoprovidereasonablequantitativeresultsforanalysesupto400Hzandutilizesfirst-orderacousticelementsthatare0.085mlong.Thismeshrefinementcorrespondsto10elements(nodaldivisions)peracousticwavelengthataresponsefrequencyof400Hz.Thelargestcross-sectionaldimensionoftheductissignificantlylessthanone-halfthe400Hzacousticwavelength;therefore,theductcross-sectioncanbemodeledwithasingleelement.Thesegeometric,material,andmeshpropertiesshouldnotbemodifiedforthisworkshop.However,aftercompletionofthisworkshopyoumaywanttoconsidermodifyingthemeshtoperformadditionalconvergenceandaccuracystudies.

Note:

Ingeneral,second-orderacousticelementsaremoreaccuratethanfirst-orderacousticelementsforthesamemeshnodaldensity.However,first-orderelementscanprovidenearlyasgoodanapproximationtoasinusoidalacousticpressurewaveascansecond-orderelementsaslongasthenodaldistributionsaresimilar.Therefore,whenperformingacousticanalysesinwhichdeterminingthepressurefieldisofprimaryinterest,first-orderelementsareoftenusedbecausetheycanbeeasiertoworkwith.Themainadvantageofsecond-orderacousticelementsisthattheyprovideforapiecewiselinearapproximationofthepressuregradients(and,thus,theparticlevelocities),whilethefirst-orderelementsproduceapiecewiseconstantapproximation.Therefore,formesheswithsimilarnodaldensities,thesecond-orderelementswillprovidesignificantlybetterquantitativeresultsforitemssuchasacousticintensity(power)thatrequireaccurateestimatesofpressuregradientsandparticlevelocities.Usingfirst-orderacousticelementstodetermineapressurefieldisanalogoustousingfirst-orderstress-displacementelementstodeterminestiffness,whileusingsecond-orderacousticelementstodetermineacousticintensityisanalogoustousingsecond-orderstress-displacementelementstodetermineastress/strainconcentration.

Case1:

Naturalfrequencyextraction(rigid-rigidends)

ThefirstanalysisforWorkshop1involvesextractingthenaturalfrequenciesoftheairductsectionshowninFigureW1–1forthecasewherebothendsoftheductutilizethenaturalboundaryconditionassociatedwithanacousticmesh.Therefore,forthiscasenoboundaryconditionsorloadingoptionsareappliedtotheacousticpressuredegreeoffreedom.Thenaturalboundaryconditionassociatedwiththesurfaceofanacousticmeshcorrespondstoinfiniteboundaryimpedance.Themeshboundarycanthereforebeenvisionedasaninfinitelyrigidsurface.

3.InanABAQUS/CAEsession,openthedatabasenamedduct.cae,whichwascreatedbyrunningthesetupscript.

4.Createanaturalfrequencyextractionsteptoobtainupto25naturalfrequenciesintherangefrom5Hzto400 Hzwithashiftpointcorrespondingto100Hz.Detailedinstructionsareprovidedbelow.UseofthedefaultLanczoseigensolverisrecommended.Theextractionofnaturalfrequenciesforanacousticmeshinrealworldproblemswilllikelyinvolverelativelylargemodels,forwhichtheLanczoseigensolverismoreefficientthanthesubspaceiterationeigensolver.Inaddition,theLanczoseigensolverallowsyoutoselectaprecisefrequencyrangefortheeigenvalueextraction.

a.IntheModelTree,double-clicktheStepscontainer.

b.IntheCreateStepdialogbox,choosetheLinearperturbationproceduretypeandselectFrequencyfromthelistofavailableprocedureoptions.Acceptthedefaultstepname,Step-1.

c.ClickContinue.

d.IntheEditstepdialogbox,specify25astherequestednumberofeigenvalues.Enter10000asthefrequencyshiftinsquaredcyclespertime.Specify5and400astheminimumandmaximumfrequenciesofinterest,respectively.Enteranappropriatestepdescription.AccepttheLanczoseigensolverandotherdefaultstepsettings.

e.ClickOK.

5.IntheModelTree,clickmousebutton3(MB3)onthejobnamedduct-1andselectSubmitinthemenuthatappearstosubmitthejobforanalysis.

6.Aftertheanalysiscompletes,useatexteditortoreviewtheprintedoutputfileduct-1.dat.ComparethenaturalfrequencieslistedintheEigenvalueOutputtabletotheexactclassicalvaluesforthisproblem.Theclassicalsolutionisforafundamentalmodeof40Hzwithanintervalof40Hzbetweensuccessivemodes.

7.IntheModelTree,clickMB3onthejobnamedduct-1andselectResultsinthemenuthatappears.ABAQUS/CAEloadstheVisualizationmoduleandopensthefileduct-1.odb.

8.ViewtheacousticmodeshapesbycreatingcontourplotsofthepressurevariablePOR(PlotContours).

9.DefineapathalongthelengthoftheductsectionandcreateaplotofPORalongthispathusingtheprocedurebelow.

a.Fromthemainmenubar,selectToolsPathCreate.

b.IntheCreatePathdialogbox,acceptthedefaultpathname(Path-1)andtype(Nodelist).ClickContinue.

c.IntheEditNodeListPathdialogbox,clickAddBefore.

d.Intheviewport,selectthestartandendpointsforthepath,asshowninFigureW1–2.ClickDoneinthepromptarea.

e.ThetableintheEditNodeListPathdialogboxnowcontainstheselectednodelabels.ClickOKtocompletethepathdefinition.

f.Fromthemainmenubar,selectToolsXYDataCreate.

g.IntheCreateXYDatadialogbox,choosePathandclickContinue.

h.IntheXYDatafromPathdialogbox,toggleonIncludeintersectionstoobtainX–Ydataatlocationswherethepathintersectsthemodelaswellasatthepointsthatmakeupthepath.

i.IntheYValuesportionoftheXYDatafromPathdialogbox,clickStep/Frame.IntheStep/Framedialogboxthatappears,choosethemodeofinterestandclickOK.

j.IntheCreateXYDatadialogbox,clickPlottogeneratethepathplot.

FigureW1–2containsexamplesofbothacontourandapathplotforthefifthmode.

 

FigureW1–2Fifthacousticmodeshapeofthe

airductsectionwithrigid-rigidends.

CASE2:

Naturalfrequencyextraction(rigid-freeends)

Asstatedearlier,thenaturalboundaryconditionassociatedwiththesurfaceofanacousticmeshcorrespondstoinfiniteboundaryimpedance.Thisimpliesthattheacousticparticlevelocitynormaltotheboundarysurfaceiszero.Theboundarysurfacecan,therefore,bethoughtofasrigid.Thenaturalboundaryconditionischaracterizedbyazeropressuregradient,asillustratedintheCase1analysisbythepathplotshowninFigureW1–2.Assigningavaluetotheacousticpressuredegreeoffreedomataboundingsurfacerepresentsakinematicboundaryconditionandcorrespondstozeroboundaryimpedance.Thistypeofboundaryconditionallowsacousticparticlestomovefreelyacrosstheboundingsurface.Theacousticparticlevelocityattheboundingsurface,characterizedbythepressuregradient,isthenunknowninamanneranalogoustoareactionforceinstructuralmechanics.Forthisanalysiscaseyouwilldeterminethenaturalfrequenciesoftheairductsectioninwhichoneendhasinfiniteboundaryimpedance(rigid)andtheotherhaszeroboundaryimpedance(free).

1.Copythemodelduct-1toamodelnamedduct-2.

a.IntheModelTree,clickMB3onthemodelnamedduct-1andselectCopyModelinthemenuthatappears.

b.Enterduct-2asthenameofthenewmodel.

Allinstructionsthatfollowapplytothemodelnamedduc

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 节日庆典

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1