整理层间介质层厚度研究.docx

上传人:b****3 文档编号:3003164 上传时间:2022-11-17 格式:DOCX 页数:14 大小:221.75KB
下载 相关 举报
整理层间介质层厚度研究.docx_第1页
第1页 / 共14页
整理层间介质层厚度研究.docx_第2页
第2页 / 共14页
整理层间介质层厚度研究.docx_第3页
第3页 / 共14页
整理层间介质层厚度研究.docx_第4页
第4页 / 共14页
整理层间介质层厚度研究.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

整理层间介质层厚度研究.docx

《整理层间介质层厚度研究.docx》由会员分享,可在线阅读,更多相关《整理层间介质层厚度研究.docx(14页珍藏版)》请在冰豆网上搜索。

整理层间介质层厚度研究.docx

整理层间介质层厚度研究

层间介质层厚度研究

一、实验目的:

1、测定各半固化片的压合厚度,了解各种半固化片压合厚度值及多张半固化片压合厚度是否为各单张半固化片的代数和。

2、对影响层间介质层厚度的各因素(层压程序、层间所处的位置、铜厚度、内层残铜率)进行分析研究。

3、推导层间厚度的计算公式。

二、实验原理及方法:

1、各种半固化片的压合厚度:

目的:

半固化片的压合厚度和加和性

实验选择1080,2116,3313,7628,1080*2,2116*2,3313*2,7628*2,1080+2116,1080+3313,1080+7628,2116+7628,1080*2+2116,1080+7628*2,2116+7628*,7628*3共16种半固化片组合方式以如图2方式进行层压。

半固化片的尺寸为18*24inch。

层压程序选择par02(0.8)和par03(1.6)以比较层压程序的影响。

为了准确测定半固化片厚度,以铜箔光面接触半固化片。

经蚀刻去除外层铜箔后用千分尺测定,考虑半固化片的溢胶,从半固化片边缘测定到半固化片厚度基本稳定,确定流胶对板边板厚度影响的情况,然后在板内选取选取25个位置,读取其厚度数据。

←(是否为只有化片,没有光板或芯板);

2、层压程序对半固化片压合厚度的影响:

目的:

程序对厚度的影响;分析层压现有程序

考察升温速率快慢加高压早晚对压合厚度的影响。

应用两种较为极端的情况:

升温速率快加高压晚和升温速率慢加高压早,分别选用第二套、第三套压合程序压合16种半固化片,蚀刻后取16个点用千分尺测量压合厚度。

层压叠层与上述实验一致。

程序2:

步骤

压力

温度

RAMP(min)

SETVal(bar)

Hold(min)

RAMP(min)

SETVal(bar)

Hold(min)

1

0

20

10

0

140

10

2

5

43

10

10

160

5

3

5

72

45

25

210

25

4

0

43

20

20

180

0

5

10

43

15

20

160

5

6

10

40

0

10

140

0

7

0

30

30

25

80

5

8

0

20

30

15

30

15

程序3:

步骤

压力

温度

RAMP(min)

SETVal(bar)

Hold(min)

(6)环境影响评价结论的科学性。

RAMP(min)

SETVal(bar)

三、安全预评价报告的基本内容Hold(min)

1

(2)环境影响后评价。

0

除了房地产市场外,在不同职业和地点的工资差别中也可以发现类似的情形。

20

目前,获得人们的偏好、支付意愿或接受赔偿的意愿的途径主要有以下三类:

①从直接受到影响的物品的相关市场信息中获得;②从其他事物中所蕴含的有关信息间接获得;③通过直接调查个人的支付意愿或接受赔偿的意愿获得。

15

5

160

4.环境保护地方性法规和地方性规章10

三、环境影响的经济损益分析2

5

三、规划环境影响评价43

(1)建设项目概况。

15

(6)对建设项目实施环境监测的建议。

20

180

0

3

5

72

55

15

210

45

4

10

43

5

15

180

0

5

10

43

0

10

160

0

6

10

40

0

10

140

0

7

0

30

30

25

80

5

8

0

20

30

15

30

15

3、铜面残铜率对层间介质厚度的影响:

目的:

推导公式,(须分析化片叠层对压厚的影响)

3.1、一面线路一面铜面层间介质层厚度情况:

根据理论推导:

当一面为线路面一面为大铜面时,介质层厚度计算公式为:

实测厚度=理论厚度*系数—铜厚*(1—残铜率)

设计残铜率的板按下图叠层方式进行层压,残铜率分别为10%、25%、50%、75%,半固化片选择1080,2116,3313,7628,1080*2,2116*2,3313*2,7628*2,1080+2116,1080+3313,1080+7628,2116+7628,1080*2+2116,1080+7628*2,2116+7628*,7628*3。

内层芯板选择1.2mm1/1Oz,大小14inch*16inch。

上下板面设计均匀横线,线宽10mil,L2面线间距30mil,为减小流胶量,将内层流胶边改为如下图的形式,灰色部分为边长为300mil的正六边形铜面,间距为10mil。

排板时按照正常四层板叠层顺序,每一块板分别用一种半固化片组合,同一块板上下固化片组合相同。

铜箔光面接触半固化片,以方便准确读取半固化片压合厚度。

层压时采用par03(1.6)层压程序。

层压板在去除5cm边框的厚度均匀区域均匀取4*4点阵。

做切片,通过金相显微镜测量半固化片的厚度。

更改后的流胶边:

3.2、两面线路层间介质层情况:

根据理论推导:

当两面为线路面时,介质层厚度计算公式为:

实测厚度=理论厚度*系数—铜厚1*(1—残铜率1)-铜厚2*(1-残铜率2)

层压开料选择⑴2116,⑵3313,⑶7628,⑷106*2,⑸1080*2,⑹1080+3313,⑺106+2116,⑻106+7628,⑼2116+1080*2,⑽3313+7628*2,⑾7628*3共11种半固化片组合。

排板时每一块板分别用一种半固化片组合。

层压时采用Par03(1.6)层压程序。

其他同2.1试验。

层压板在去除5cm边框的厚度均匀区域均匀取4*4点阵。

做切片,通过金相显微镜测量半固化片的厚度。

4、内外层半固化片层压差异:

层压过程中,由于内外层与热源距离有差异,环氧树脂与铜面的传热速率有差异。

因此,有必要考察此种温度差异对半固化片厚度的影响。

采用普通8层板的叠层方式进行层压。

层压开料选择⑴2116,⑵3313,⑶7628,⑷106*2,⑸1080*2共5种半固化片组合。

排板时按照正常8层板叠层顺序,每一块板分别用一种半固化片组合,同一块板上下固化片组合相同。

层压时采用Par03(1.6)层压程序。

层压后在厚度均匀区域取均匀4*4点阵,做切片并用金相显微镜测量半固化片压合厚度。

三、实验数据及处理:

(实验原始数据及处理见:

半固化片压合数据综合分析

1、流胶对板边半固化片厚度的影响:

(原始数据及处理见:

半固化片压合数据综合分析中流胶对板边厚度的影响)

表1、压合后板边半固化片厚度变化

离板边距离

(mm)

半固化片类型

0

1

2

3

4

5

1080*1

0.06

0.071

0.076

0.076

0.074

0.076

3313*1

0.084

0.106

0.115

0.109

0.114

0.115

2116*1

0.095

0.11

0.115

0.119

0.124

0.119

7628*1

0.168

0.186

0.202

0.21

0.209

0.207

1080*2

0.082

0.119

0.154

0.168

0.169

0.168

3313*2

0.14

0.166

0.192

0.208

0.218

0.218

2116*2

0.168

0.201

0.221

0.244

0.249

0.249

7628*2

0.251

0.351

0.385

0.391

0.395

0.4

1080+3313

0.14

0.161

0.181

0.189

0.199

0.199

1080+7628

0.184

0.24

0.269

0.291

0.296

0.296

1080*2+2116

0.195

0.207

0.229

0.239

0.261

0.273

1080+7628*2

0.301

0.414

0.472

0.481

0.485

0.493

2116+7628*2

0.344

0.398

0.47

0.52

0.537

0.54

7628*3

0.405

0.547

0.572

0.598

0.603

0.61

 

结论:

A、由于层压过程中,树脂在一定阶段具有流动性,这使得树脂可以填充到铜面之间的间隙中,也使板边树脂向外溢流,因此整体厚度呈现由板边向板中逐渐增厚直至稳定的趋势。

B、不同含胶量的板达到稳定厚度离的板边距离不一致,但基本在板边5CM处均可以达到稳定,可认为5CM是流胶区域的最大值。

C、各种半固化片组合的压合厚度与单张半固化片的压合厚度具有加和性。

为了控制板边流胶对板厚度的影响,将板边阻流点设计进行更改如上图所示。

2、各半固化片厚度数值与不同压合程序厚度值对比:

(原始数据及处理见:

半固化片压合数据综合分析中压合程序对介质层厚度影响)

半固化片类型

程序2压合厚度

程序3压合厚度

两种压合程序厚度差异

相对偏差(100%)

平均值

1080

0.0792

0.08147

0.00227

2.8256675

0.080335

3313

0.10909

0.10744

-0.00165

-1.524038

0.108265

2116

0.12424

0.12241

-0.00183

-1.483884

0.123325

7628

0.20575

0.20012

-0.00563

-2.774287

0.202935

应用两种不同的层压程序,拟合得到的半固化片理论厚度差异很小,可认为层压程序对半固化片理论厚度没有影响。

3、残铜对介质厚度的影响:

(原始数据及处理见:

半固化片压合数据综合分析中流胶对板边厚度的影响)

、无论是单种半固化片或者是多种半固化片的组合,其压合厚度均随残铜率增长而增长。

、压合厚度于残铜率具有相当的线性规律。

由于环氧树脂固化过程中体积收缩率小,层压过程中树脂填充到铜层空隙中,引起层压厚度减薄。

因此可得到计算层压厚度的计算公式:

实测厚度=理论厚度+铜厚*残铜率

、计算公式反推各种组合的理论厚度,发现可获得一致的结论,公式具有可靠性。

、根据物质守恒原理,理论上各种半固化片若无明显的相互反应而发生化学反应而又挥发性物质逸出,半固化片的组合理论厚度应为各单张半固化片的理论厚度总和。

分析实验数据得到了与理论基本一致的结论。

4、半固化片所处位置的影响:

(原始数据及处理见:

半固化片压合数据综合分析中内外层半固化片厚度的差异)

内外层介质层厚度相对偏差小于2%,无明显厚度差异。

从差异值上看正差异与负差异均匀分布,有一定的随机性。

5、整体数据分析:

见半固化片压合数据综合分析中总体分析及结论

综合考虑上述各种条件下对层间厚度的影响,得到各种半固化片的理论压合厚度:

板固化片类型

106

1080

3313

2116

7628

理论厚度(mm)

0.0529

0.0797

0.1066

0.1222

0.2011

四、总结:

1、各半固化片厚度数值:

考虑到层压过程中半固化片的流胶,将各理论半固化片的厚度*0.97,得到下表数据:

板固化片类型

106

1080

3313

2116

7628

理论实际厚度(mm)

0.0513

0.0773

0

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 法律文书 > 调解书

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1