单相半控桥式晶闸管整流.docx

上传人:b****8 文档编号:29989074 上传时间:2023-08-04 格式:DOCX 页数:21 大小:377.54KB
下载 相关 举报
单相半控桥式晶闸管整流.docx_第1页
第1页 / 共21页
单相半控桥式晶闸管整流.docx_第2页
第2页 / 共21页
单相半控桥式晶闸管整流.docx_第3页
第3页 / 共21页
单相半控桥式晶闸管整流.docx_第4页
第4页 / 共21页
单相半控桥式晶闸管整流.docx_第5页
第5页 / 共21页
点击查看更多>>
下载资源
资源描述

单相半控桥式晶闸管整流.docx

《单相半控桥式晶闸管整流.docx》由会员分享,可在线阅读,更多相关《单相半控桥式晶闸管整流.docx(21页珍藏版)》请在冰豆网上搜索。

单相半控桥式晶闸管整流.docx

单相半控桥式晶闸管整流

课程设计任务书

学生姓名:

专业班级:

指导教师:

工作单位:

题目:

单相半控桥式晶闸管整流电路的设计(带续流二极管)(阻感负载)初始条件:

1电源电压:

交流100V/50HZ

2、输出功率:

500W

3、移相范围0o~180o

要求完成的主要任务:

(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)

1、根据课程设计题目,收集相关资料、设计主电路、控制电路;

2、用MATLAB/Simulink对设计的电路进行仿真;

3、撰写课程设计报告一一画出主电路、控制电路原理图,说明主电路的工作原理、

选择元器件参数,说明控制电路的工作原理、绘出主电路典型波形,绘出触发信号(驱动信号)波形,并给出仿真波形,说明仿真过程中遇到的问题和解决问题的方法,附参考资料;

5、通过答辩。

时间安排:

2012.12.24-12.29

指导教师签名:

系主任(或责任教师)签名:

摘要

单向桥式半控整流电路实际上是由单相桥式全控电路简化而来的。

在单相桥式全控整流电路中,每一个导电回路中有两个晶闸管,即用两个晶闸管同时导通以控制导电的回路。

但实际上为了对每个导电回路进行控制,只需要一个晶闸管就行了,另一个晶闸管可以用二级管代替,从而得到单向半控桥式整流电路。

除了用二极管代替晶闸管以外,该电路在实际应用中需加设续流二极管VDr,以避免

可能发生的失控现象。

实际运行中,若无续流二极管,则当:

突然增大至180或触发脉冲

丢失时,会发生一个晶闸管持续导通而两个二极管轮流导通的情况,这使ud成为正弦半波,

即半周期Ud为正弦,另外半周期Ud为零,其平均值保持恒定,相当于单相半波不可控整流电路时的波形,称为失控。

有续流二极管VDr时,续流过程由VDr完成,在续流阶段晶闸管关断,这就避免了某一个晶闸管持续导通从而导致失控的现象。

总的来说,单相桥式半控整流电路具有电路简单、调整方便、使用元件少等优点,而且不会导致失控显现,续流期间导电回路中只有一个管压降,少了一个管压降,有利于降低损耗。

关键词:

单相半控续流二极管

1系统总体设计4

2主电路设计5

2.1主电路结构及其工作原理5

2.2参数计算6

3元器件选择6

4控制电路设计8

4.1同步电路9

4.2锯齿波形成电路10

4.3移相控制电路10

4.4脉冲形成电路11

5波形仿真12

6心得体会错误!

未定义书签。

7参考文献错误!

未定义书签。

1系统总体设计

电力电子器件在实际应用中,一般是由控制电路、驱动电路和以电力电子器件作为核心的主电路组成一个系统。

由信息电子电路组成的控制电路按照系统的工作要求形成控制信号,通过驱动电路去控制主电路中电力电子器件的导通或者关断,来完成整个系统的功能。

,广义上人们往往将主电路以外的电路都归为控制电路,从而粗略的说,电力电子系统是由主电路和控制电路组成的。

另外,主电路中的电压和电流一般都比较大,而控制电路的元器件只能承受较小的电压和电流。

在单相半控桥式晶闸管整流电路中,系统由主电路和控制电路组成。

系统原理框图如图1所示。

控制电路

图1系统原理框图

2主电路设计

2.1主电路结构及其工作原理

单相半控桥式整流电路带阻感负载且有续流二极管的主电路图如图2所示:

L1

15QHcTEKT>

R1

图2单相半控桥式整流主电路图

对于带阻感负载的单相桥式半控整流电路而言,当负载中电感很大时,在U2

正半周,触发角〉处给晶闸管VT1加触发脉冲,U2经VT1和VD4向负载供电。

U2过零变负时,因电感作用使电流连续,VT1继续导通但因VT1端电位高于VD2端电位,使得电流从VD4转移至VD2VD4关断,电流不再流经交流源,而是由VT1和VD2续流,在此阶段g=0。

在U2负半周触发角〉时刻触发VT3,VT3导通,则向VT1加反压使其关断,u2经VT3和VD2向负载供电。

u2过零变正时,VD4导通,VD2关断。

VT3和VD4续流,山为0,此后重复以上过程。

有续流二极管VDr时,续流过程由VDr完成,在续流阶段晶闸管关断,这就

避免了某一个晶闸管持续导通从而导致失控的现象。

同时,续流期间导电回路中只有一个管压降,少了一个管压降,有利于降低损耗。

2.2参数计算

在单相桥式半控整流电路中:

输出电压平均值:

Ud二丄、2U2sin,tdt=2五21cos:

-o.gu?

1C°S:

2一.二22

式中,U2表示交流输入电压有效值,:

•表示晶闸管触发角。

输出电流平均值:

流过晶闸管电流有效值:

Id

IVT

计算负载R值:

 

22

r旦二臾162」

W500

3元器件选择

由于单相桥式半控整流电路主要电力电子器件是晶闸管,所以选取元器件时

主要考虑晶闸管的参数及选取原则。

晶闸管的主要参数如下:

(1)电压定额

1断态重复峰值电压Udrm

断态重复峰值电压是在门极断路而结温为额定值时,允许重复加在器件上的正向峰值电压(见图3)。

国标规定重复频率为50Hz,每次持续时间不超过10ms规定断态重复峰值电压Udrm为断态不重复峰值电压(即断态最大瞬时电压)Udsm的90%断态不重复峰值电压应低于正向转折电压Ub。

2反向重复峰值电压Urrm

反向重复峰值电压是在门极断路而结温为额定值时,允许重复加在器件上的反向峰值电压(见图3)。

规定反向重复电压Urrm为反向不重复峰值电压(即反向最大瞬态电压)Ursm的90%反向不重复峰值电压应低于反向击穿电压。

3通态(峰值)电压Utm

这是晶闸管通以某一规定倍数的额定通态平均电流时的瞬态峰值电压。

通常取晶闸管的Udrm和Urrm中较小的标值作为该器件的额定电压。

选用时,额定电压要留有一定裕量,一般取额定电压为正常工作时晶闸管所承受峰值电压的2到3倍。

(2)电流定额

①通态平均电流lTav

国标规定通态平均电流为晶闸管在环境温度为40C和规定的冷却状态下,

稳定结温不超过额定结温时所允许流过的最大工频正弦半波电流的平均值。

这也

是标称其额定电流的参数。

同电力二极管的正向平均电流一样,这个参数是按照正向电流造成的器件本身的通态损耗的发热效应来定义的。

因此在使用时同样应

像电力二极管那样,按照实际波形的电流与晶闸管所允许的最大正玄半波电流

(其平均值即通态平均电流Itav)所造成的发热效应相等(即有效值相等)的

原则来选取晶闸管的此项电流定额,并应留有一定的裕量。

一般取其通态平均电流为按此原则所得计算结果的1.5到2倍。

例如,需要某晶闸管实际承担的某波形电流有效值为400A则可选取额定电流(通态平均电流)为400A/1.57=255A的晶闸管(根据正弦半波波形平均值与有效值之比为1:

1.57),再考虑裕量,比

如将计算结果放大到2倍左右,则可选取额定电流500A的晶闸管。

2维持电流IH

维持电流是指使晶闸管维持导通所必需的最小电流,一般为几十到几百毫

安。

Ih与结温有关,结温越高,则Ih越小。

3擎柱电流II

擎住电流是晶闸管刚从断态转入通态并移除触发信号后,能维持导通所需的

最小电流。

对同一晶闸管来说,通常Il约为Ih的2至4倍。

4浪涌电流Itsm

浪涌电流是指由于电路异常情况引起的并使结温超过额定结温的不重复性最大正向过载电流。

浪涌电流有上下两个级,这个参数可以作为设计保护电路的依据。

根据以上叙述,可得到晶闸管额定电压Utm:

UTM=(2~3广2u2二283~424V

晶闸管额定电流:

In=(1.5~2)*—=3.75~5A

1.57、2

4控制电路设计

控制电路由五个基本环节:

同步环节、锯齿波的形成、脉冲移相、脉冲的形成与放大。

下面分别介绍

4.1同步电路

同步环节电路如图4所示。

在锯齿波同步的触发电路中,触发电路与主电路的同步是指要求锯齿波的频率与主电路电源的频率相同且相位关系确定。

锯齿波

是由开关Q2管来控制的。

Q2由导通变截止期间产生锯齿波,Q2截止状态持续的时间就是锯齿波的宽度,Q2开关的频率就是锯齿波的频率。

要使出发脉冲与主电路电源同步,使Q2的开关频率与主电路电源频率同步就可达到。

同步信号由同步变压器得到,其与主电路电源的频率相同且相位关系确定。

电路由R1、C1、D1、D2和Q1组成。

在电源电压负半周下降段时,D1导通,C1端电压随电源电压变化,Q1金吒管基极为方向偏置,Q1截止。

电源电压进入负半周上升段时,D1截止,电源经过R1为C1反向充电,因选取的时间常数较大,uc1上升缓慢,当上升到大约1.4V时,Q1从截止状态转为导通状态,uc1钳位。

直至再次过零变负,重复上述过程。

图4同步电路、锯齿波形成电路

4.2锯齿波形成电路

锯齿波形成电路如图4所示。

其组成电路是由Q1、Q2Q3R3R5C2RV1D3组成,其中Q1RV1D3组成恒流源,Q3R5为射极输出器。

当Q1导通时,电容C2经过R3迅速放电,Uc2近于零。

在Q1转为截止时,恒流源给电容uc2充电,则电容两端电压线性增长,知道Q1再次饱和导通,C2放电为止。

同步开关Q1周期性变化时,C2端形成一锯齿波。

锯齿波是由开关Q1管控制。

锯齿波的频率由同步变压器所接的交流电压以及Q1管的开关频率决定,锯齿波起点基本就是同步电压由正变负的过零点,斜由RV1调节,锯齿波宽度即Q1截止状态持续的时间,取决于充电时间常数。

4.3移相控制电路

移相控制电路如图5所示。

移相控制电路由Q3Q4组成,移相控制有三个信号:

偏置电压、锯齿波、

控制电压。

三个信号叠加控制Q4通过调节偏置电压使形成的电压在控制角为90度时过零

图5移相控制电路

4.4脉冲形成电路

脉冲形成电路如图6所示。

电路由Q4Q5组成脉冲形成环节,Q6Q7组成脉冲放大环节。

控制电压加

在Q4基极上。

当偏移电压、锯齿波和控制电压叠加为反向时,Q4截止,Q5饱和

导通,Q6Q7处于截止状态,无脉冲输出,电容C3充电,充满电后电容两端电压接近2E(30V);当偏移电压、锯齿波和控制电压叠加为正向时,Q4导通,C3

端电位由E(15V)下降到1V左右,Q5基极电位下降到-2E,Q5立即截止。

Q5集电极电位由-E上升到2.1V,Q6Q7导通输出脉冲。

图6脉冲形成电路

5波形仿真

仿真电路图如图7所示:

图7仿真电路图

(1)当触发角〉=0时的波形仿真图如图8所示:

输出电谛波形

7.d.L^JI.:

一【一I一丨一I

Qili■ijiai■iliii■■^■■iiiiiJiiiiBiKiiiiiiiiBiiiiiiiiii■■lii■ii■i■i■ii■iaI■imii■iai■ihii■I«I■■hI■■IaI■I■Ii.4ii■I■IiIIuIi.ii

」iiiiiiii

20

图8触发角=0;时的波形仿真图

如图8所示,第一通道是输出电流的波形,第二通道是输出电压的波形,第三通道是交流源的波形,第四、第五通道分别是VT1、VT3的出发信号的波形。

由于续流二极管的存在,在交流电源电压的负半周时的输出电压与在交流电压源的正半周时的输出电压波形相同。

由于带的是阻感负载,其对电路中电流的

变化有抗拒作用,即延迟了晶闸管的触发信号,所以触发信号到来时,输出波形并不会立即产生变化,而是延迟一段时间后才变为正弦波形。

由于负载中所带电感较大(1H)所以输出电流波形近似稳定,接近于一条直线。

以下分别是〉=30:

•=60:

、:

•=90:

、:

•=120•=180时的波形仿真图。

(2)当触发角〉=30:

时的波形仿真图如图9所示:

輸出电赤迪形

图9触发角:

-=30时的波形仿真图

如图9所示,第一通道是输出电流的波形,第二通道是输出电压的波形,第三通道是交流源的波形,第四、第五通道分别是VT1、VT3的出发信号的波形。

由于续流二极管的存在,在交流电源电压的负半周时的输出电压与在交流电压源的正半周时的输出电压波形相同。

由于带的是阻感负载,其对电路中电流的变化有抗拒作用,即延迟了晶闸管的触发信号,所以触发信号到来时,输出波形并不会立即产生变化,而是延迟一段时间后才变为正弦波形。

由于负载中所带电感较大(1H)所以输出电流波形近似稳定,接近于一条直线。

触发角:

=30,所以输出电压波形比电源电压延迟30相位。

(3)当触发角〉=60时的波形仿真图如图10所示:

图10当触发角〉=60时的波形仿真图

如图10所示,第一通道是输出电流的波形,第二通道是输出电压的波形,第三通道是交流源的波形,第四、第五通道分别是VT1、VT3的出发信号的波形。

由于续流二极管的存在,在交流电源电压的负半周时的输出电压与在交流电

压源的正半周时的输出电压波形相同。

由于带的是阻感负载,其对电路中电流的变化有抗拒作用,即延迟了晶闸管的触发信号,所以触发信号到来时,输出波形并不会立即产生变化,而是延迟一段时间后才变为正弦波形。

由于负载中所带电感较大(1H)所以输出电流波形近似稳定,接近于一条直线。

触发角〉=60;,所以输出电压波形比电源电压延迟60相位。

(4)当触发角〉=90;时的波形仿真图如图11所示:

输岀电济迪肱

11

11

11

r

11

wi•i>i■i■ii■i■ii■i■ii■i■ii■i■i«iri■i

1LLJ

iri■iir■■iri■i7ri■i"ifii■i■iifi■iip

ii

L

图11当触发角〉=90时的波形仿真图

如图11所示,第一通道是输出电流的波形,第二通道是输出电压的波形,

第三通道是交流源的波形,第四、第五通道分别是VT1、VT3的出发信号的波形。

由于续流二极管的存在,在交流电源电压的负半周时的输出电压与在交流电压源的正半周时的输出电压波形相同。

由于带的是阻感负载,其对电路中电流的

变化有抗拒作用,即延迟了晶闸管的触发信号,所以触发信号到来时,输出波形并不会立即产生变化,而是延迟一段时间后才变为正弦波形。

由于负载中所带电感较大(1H)所以输出电流波形近似稳定,接近于一条

直线。

触发角〉=90;,所以输出电压波形比电源电压延迟90相位。

(5)当触发角〉=120;时的波形仿真图如图12所示:

图12触发角〉=120时的波形仿真图

如图12所示,第一通道是输出电流的波形,第二通道是输出电压的波形,

第三通道是交流源的波形,第四、第五通道分别是VT1、VT3的出发信号的波形。

由于续流二极管的存在,在交流电源电压的负半周时的输出电压与在交流电压源的正半周时的输出电压波形相同。

由于带的是阻感负载,其对电路中电流的变化有抗拒作用,即延迟了晶闸管的触发信号,所以触发信号到来时,输出波形并不会立即产生变化,而是延迟一段时间后才变为正弦波形。

由于负载中所带电感较大(1H)所以输出电流波形近似稳定,接近于一条直线。

触发角:

=120,所以输出电压波形比电源电压延迟120相位。

(6)当触发角〉=150;时的波形仿真图如图13所示:

输岀电流疲畛

图13触发角〉=150时的波形仿真图

如图12所示,第一通道是输出电流的波形,第二通道是输出电压的波形,

第三通道是交流源的波形,第四、第五通道分别是VT1、VT3的出发信号的波形。

由于续流二极管的存在,在交流电源电压的负半周时的输出电压与在交流电

 

压源的正半周时的输出电压波形相同。

由于带的是阻感负载,其对电路中电流的变化有抗拒作用,即延迟了晶闸管的触发信号,所以触发信号到来时,输出波形并不会立即产生变化,而是延迟一段时间后才变为正弦波形。

由于负载中所带电感较大(1H)所以输出电流波形近似稳定,接近于一条

直线。

触发角:

=150,所以输出电压波形比电源电压延迟150相位。

(7)当触发角〉=180;时的波形仿真图如图14所示:

100

0

■5

丁「

!

!

L

r

r

i

ii

L

L

L

100

~r

i

h

i

A

i

h

h

~r

k

i

i

i

i

i

i

I

I

I

30

20

10

0

•1U

n

r

!

r

!

r

J■■■■I,■J11J■■■1

・・・・■・・

■laiiaBij・・・・・■■

・■・・・・・

■■an■j■■■u■■ab■j・・・■■u■i

・・・・・・

BlilBIJBI■■li■aBI1

-

■1■J■■■■L■■B・

1

1

i

1

1

30

咖发信号

10

■W

20

D01

0.02

0.03

0.04

0.05

0.06

0.U7

0.08

0.U8

nr

nr

Illi

d■・db■Ja■■d■.1a■■dLldhl.ih・S.

.■■■di.■jh・■a■■>

i■■dl■d>■sJis■jjh■■a■

b■■-■■a■■■d&■■a■iai,

■a■1^1■dL■J«■SAS■d1.■A■■dk■J

lji—i.■a■・dl■jh■■

>■■fa・・・■■・・■fa■

■■■d1.■db・U■■lai.IJblJal■

■i■ut・4■<■dt■j&■■ai

9

1

1

1

1

I

1

I

0.1

图14触发角〉=180;时的波形仿真图

 

通过以上波形仿真可以看出,随着触发角的增大,输出电压逐渐减小,当触发角为0时,输出电压为最大;当触发角为180;时,输出电压为最小,接近于零。

仿真中遇到的问题和解决办法:

在设计仿真电路时,第一次添加器件进行连线时,器件与器件之间连线不成功,查阅资料并修改器件重新添加后,连线成功。

仿真时,由于示波器坐标没有进行调整,导致波形超出显示范围;对示波器坐标量程进行调整后,显示完整波形。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 经济学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1