广州中考数学压轴题汇总.docx
《广州中考数学压轴题汇总.docx》由会员分享,可在线阅读,更多相关《广州中考数学压轴题汇总.docx(9页珍藏版)》请在冰豆网上搜索。
广州中考数学压轴题汇总
广州中考压轴题汇总
选择题
(2014·广州)如图,四边形ABCD、CEFG都是正方形,点G在线段CD上,连接BG、DE,DE和FG相交于点O,设AB=a,CG=b(a>b).下列结论:
①△BCG≌△DCE;②BG⊥DE;③
=
;④(a﹣b)2?
S△EFO=b2?
S△DGO.其中结论正确的个数是( )
A.4个B.3个C.2个D.1个
(2015·广州)已知2是关于x的方程x2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为( )
A.10B.14C.10或14D.8或10
(2016·广州)定义运算:
a?
b=a(1﹣b).若a,b是方程x2﹣x+
m=0(m<0)的两根,则b?
b﹣a?
a的值为( )
A.0B.1C.2D.与m有关
(2017·广州)a≠0,函数y=
与y=﹣ax2+a在同一直角坐标系中的大致图象可能是( )
A.
B.
C.
D.
(2017·广州)在平面直角坐标系中,一个智能机器人接到如下指令:
从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到An.则△OA2A2018的面积是( )
A.504m2B.
m2C.
m2D.1009m2
填空题
(2014·广州)若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,
则x1(x2+x1)+x22的最小值为 .
(2015·广州)如图,四边形ABCD中,∠A=90°,AB=3
,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为 .
(2016·广州)如图,正方形ABCD的边长为1,AC,BD是对角线.将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:
①四边形AEGF是菱形
②△AED≌△GED
③∠DFG=112.5°
④BC+FG=1.5
其中正确的结论是 .
(2017·广州)如图,平面直角坐标系中O是原点,?
OABC的顶点A,C的坐标分别是(8,0),(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB于点F,G,连接FG.则下列结论:
①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是
;④OD=
其中正确的结论是 (填写所有正确结论的序号).
(2018·广州)如图,CE是?
ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E.连接AC,BE,DO,DO与AC交于点F,则下列结论:
①四边形ACBE是菱形;
②∠ACD=∠BAE;
③AF:
BE=2:
3;
④S四边形AFOE:
S△COD=2:
3.
其中正确的结论有 .(填写所有正确结论的序号)
解答题
(2014·广州24)已知平面直角坐标系中两定点A(﹣1,0)、B(4,0),抛物线y=ax2+bx﹣2(a≠0)过点A,B,顶点为C,点P(m,n)(n<0)为抛物线上一点.
(1)求抛物线的解析式和顶点C的坐标;
(2)当∠APB为钝角时,求m的取值范围;
(3)若m>
,当∠APB为直角时,将该抛物线向左或向右平移t(0<t<
)个单位,点C、P平移后对应的点分别记为C′、P′,是否存在t,使得首位依次连接A、B、P′、C′所构成的多边形的周长最短?
若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.
(2014·广州25)如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=3,BC=4,CD=5.点E为线段CD上一动点(不与点C重合),△BCE关于BE的轴对称图形为△BFE,连接CF.设CE=x,△BCF的面积为S1,△CEF的面积为S2.
(1)当点F落在梯形ABCD的中位线上时,求x的值;
(2)试用x表示
,并写出x的取值范围;
(3)当△BFE的外接圆与AD相切时,求
的值.
(2015·广州24)如图,四边形OMTN中,OM=ON,TM=TN,我们把这种两组邻边分别相等的四边形叫做筝形.
(1)试探究筝形对角线之间的位置关系,并证明你的结论;
(2)在筝形ABCD中,已知AB=AD=5,BC=CD,BC>AB,BD、AC为对角线,BD=8,
①是否存在一个圆使得A,B,C,D四个点都在这个圆上?
若存在,求出圆的半径;若不存在,请说明理由;
②过点B作BF⊥CD,垂足为F,BF交AC于点E,连接DE,当四边形ABED为菱形时,求点F到AB的距离.
(2015·广州25)已知O为坐标原点,抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A(x1,0),B(x2,0),与y轴交于点C,且O,C两点间的距离为3,x1?
x2<0,|x1|+|x2|=4,点A,C在直线y2=﹣3x+t上.
(1)求点C的坐标;
(2)当y1随着x的增大而增大时,求自变量x的取值范围;
(3)将抛物线y1向左平移n(n>0)个单位,记平移后y随着x的增大而增大的部分为P,直线y2向下平移n个单位,当平移后的直线与P有公共点时,求2n2﹣5n的最小值.
(2016·广州24)已知抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B
(1)求m的取值范围;
(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;
(3)当
<m≤8时,由
(2)求出的点P和点A,B构成的△ABP的面积是否有最值?
若有,求出该最值及相对应的m值.
(2016·广州25)如图,点C为△ABD的外接圆上的一动点(点C不在
上,且不与点B,D重合),∠ACB=∠ABD=45°
(1)求证:
BD是该外接圆的直径;
(2)连结CD,求证:
AC=BC+CD;
(3)若△ABC关于直线AB的对称图形为△ABM,连接DM,试探究DM2,AM2,BM2三者之间满足的等量关系,并证明你的结论.
(2017·广州24)如图,矩形ABCD的对角线AC,BD相交于点O,△COD关于CD的对称图形为△CED.
(1)求证:
四边形OCED是菱形;
(2)连接AE,若AB=6cm,BC=
cm.
①求sin∠EAD的值;
②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.
(2017·广州)如图,AB是⊙O的直径,
=
,AB=2,连接AC.
(1)求证:
∠CAB=45°;
(2)若直线l为⊙O的切线,C是切点,在直线l上取一点D,使BD=AB,BD所在的直线与AC所在的直线相交于点E,连接AD.
①试探究AE与AD之间的数量关系,并证明你的结论;
②
是否为定值?
若是,请求出这个定值;若不是,请说明理由.
(2018·广州24)已知抛物线y=x2+mx﹣2m﹣4(m>0).
(1)证明:
该抛物线与x轴总有两个不同的交点;
(2)设该抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),与y轴交于点C,A,B,C三点都在⊙P上.
①试判断:
不论m取任何正数,⊙P是否经过y轴上某个定点?
若是,求出该定点的坐标;若不是,说明理由;
②若点C关于直线x=﹣
的对称点为点E,点D(0,1),连接BE,BD,DE,△BDE的周长记为l,⊙P的半径记为r,求
的值.
(2018·广州25)如图,在四边形ABCD中,∠B=60°,∠D=30°,AB=BC.
(1)求∠A+∠C的度数;
(2)连接BD,探究AD,BD,CD三者之间的数量关系,并说明理由;
(3)若AB=1,点E在四边形ABCD内部运动,且满足AE2=BE2+CE2,求点E运动路径的长度.