六年级数学总复习知识点全集35151.docx

上传人:b****5 文档编号:29850905 上传时间:2023-07-27 格式:DOCX 页数:17 大小:105.58KB
下载 相关 举报
六年级数学总复习知识点全集35151.docx_第1页
第1页 / 共17页
六年级数学总复习知识点全集35151.docx_第2页
第2页 / 共17页
六年级数学总复习知识点全集35151.docx_第3页
第3页 / 共17页
六年级数学总复习知识点全集35151.docx_第4页
第4页 / 共17页
六年级数学总复习知识点全集35151.docx_第5页
第5页 / 共17页
点击查看更多>>
下载资源
资源描述

六年级数学总复习知识点全集35151.docx

《六年级数学总复习知识点全集35151.docx》由会员分享,可在线阅读,更多相关《六年级数学总复习知识点全集35151.docx(17页珍藏版)》请在冰豆网上搜索。

六年级数学总复习知识点全集35151.docx

六年级数学总复习知识点全集35151

第一部分数与代数

(一)数的认识

知识点一:

数的意义和分类

自然数、整数、正数和负数、分数、百分数、小数

分数的含义:

把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。

(1)分数单位:

把单位“1”平均分成若干份,表示这样一份的数就是这个分数的分数单位。

一个分数的分母是几,它的分数单位就是几分之一;分子是几,它就有几个这样的分数单位。

(注意:

带分数只有化成假分数后,它的分子才能是这个带分数中含有分数单位的个数。

(2)分数的分类:

分数可以分为真分数和假分数。

真分数:

分子比分母的小分数叫做真分数。

真分数小于1。

假分数:

分子比分母大或分子和分母相等的分数叫做假分数。

假分数大于或者等于1。

带分数实际上就是大于1的假分数的另一种表示形式。

(3)最简分数:

分子与分母的公因数只有1的分数叫做最简分数。

知识点二:

计数单位和数位

1、计数单位:

个、十、百……以及十分之一、百分之一、千分之一……都是计数单位。

“一”是基本单位,其他单位又叫做辅助单位。

2、十进制计数法:

每相邻的两个计数单位之间的进率都是十。

3、数位:

在计数时,计数单位要按照一定的顺序排列起来,它们所在的位置叫做数位。

4、数位顺序表

知识点三:

数的大小比较

1.整数大小比较

①  位数多的整数大于位数少的整数。

如七位数大于六位数。

②  位数相同,从高位到低位依次进行比较,最高位大的数较

大;如果最高位相同,再比较左起第二位,第二位大的数较大,依此类推。

2.小数大小比较

先看整数部分(按整数大小比较),整数部分大的小数比较大;如果整数部分相同,就看十分位,十分位大的小数比较大…….

3.分数大小比较

(1)真假分数或整数部分相同的带分数:

分母相同,分子大则分数大;分子相同,则分母小的分数大;分子和分母都不相同,通分后化成同分母的分数再比较大小。

(2)整数部分不同的带分数,整数部分大的则分数大。

知识点四:

数的性质

1、分数的基本性质:

分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变。

2、小数的基本性质:

小数的末尾添上0或者去掉0,小数的大小不变。

3、小数点位置移动引起小数大小变化的规律

知识点五:

数的改写与近似数

1.把数改写成以“万”或“亿”为单位的数

对于一个比较大的整数来说,为了便于读写方便,往往可以把它改写成用“万”或“亿”作单位的数。

具体方法是:

(1)把一个数改写成用“万”作单位的数。

将该数的小数点向左移动四位,再在后面加上“万”字。

如43000=4.3万。

(2)把一个数改写成用“亿”作单位的数。

将该数的小数点向左移动八位,再在后面加上“亿”字。

如576000000=5.76亿。

注意:

改写应得到准确值,所以用等号。

2.取近似数的几种方法:

(1)四舍五入法:

看要保留的那一位后面一位,如果后面一位的数字大于或等于5,就去掉这一位和它后面所有的数,再向前进1,得到要求的近似数;如果要保留的那一位后面一位的数字小于或等于4,就去掉这一位和它后面所有的数,从而得到要求的近似数。

例:

求下列各数的近似数

3.54963≈3.5(保留到十分位)3.54963≈3.55(保留百分位)

3.54963≈3.550(保留到千分位)注意,3.550末尾的0为什么不能去掉?

(2)去尾法:

根据需要,不管要保留数位后面是多少,都将它去掉,这种取近似数的方法叫做“去尾法”。

(3)进一法:

根据实际需要,不管保留的数位后面是多少,都要向前进一,这种取近似数的方法叫做进一法。

 

小数、分数、百分数的互化

互化

方法

小数化成分数

原来有几位小数,就在1后面写几个0作分母,把原来小数去掉小数点作分子。

能约分的要约成最简分数。

小数化成百分数

把小数点向右移动两位(位数不够用0补足),同时在后面添上百分号.

百分数化成小数

把百分号去掉,同时把小数点向左移动两位(位数不够用0补足).

分数化成百分数

先把分数化成小数,(遇到除不尽时,通常要求保留三位小数),再化成百分数.

百分数化成分数

先把百分数改写成分母是100的分数,能化简的要化简;

知识点五:

因数、倍数、质数、合数

1、因数和倍数

已知a、b、c均为正整数,且a×b=c,那么c就是a和b的倍数,a和b就是c的因数。

倍数和因数是相互依存的。

一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它的本身;一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。

一个数既是它自身的因数,又是它自身的倍数。

2、最大公因数和最小公倍数

最大公因数:

几个数公有的因数,叫做这几个数的公因数,其中最大的一个,叫做这几个数的最大公因数。

最小公倍数:

几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。

3、质数和合数

质数:

一个数,如果只有1和它本身两个因数,这样的数叫做质数

最小的质数是2。

合数:

一个数,如果除了1和它本身两个因数外还有别的因数,这样的数叫做合数。

最小的合数是4。

1既不是质数,也不是合数。

(二)数的运算

知识点一:

四则运算的意义

1、加法的意义:

把两个数合并成一个数的运算。

2、减法的意义:

已知两个数的和与其中的一个加数,求另一个加数的运算。

3、整数乘法的意义:

求几个相同加数的和的简便运算。

4、小数乘法的意义:

小数乘整数与整数乘法的意义相同,也是求几个相同加数的和的简便运算;

一个数乘小数求这个数的十分之几、百分之几……是多少。

5、分数乘法的意义:

分数乘整数与整数乘法的意义相同,也是求几个相同加数的和的简便运算;

一个数乘分数就是求这个数的几分之几是多少。

6、除法的意义:

已知两个因数的积和其中的一个因数,求另一个因数的运算。

知识点二:

四则运算的法则

整数加减法,小数加减法,分数加减法,整数乘法,分数乘法,整数除法,小数除法,分数除法

知识点三:

四则混合运算

加法和减法叫做第一级运算,乘法和除法叫做第二级运算。

在一个没有括号的算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运算,要先做第二级运算,再做第一级运算。

在一个有括号的算式里,要先算小括号里面,再算中括号里面的,最后算大括号里面的。

知识点四:

运用定律,使计算简便

加法交换律:

a+b=b+a加法结合律:

(a+b)+c=a+(b+c)

乘法交换律:

ab=ba乘法结合律:

(ab)c=a(bc)乘法分配律:

a(b+c)=ab+ac

除法的性质:

a÷b÷c=a÷c÷b=a÷(b×c)

减法的性质:

a-b-c=a-c-b=a-(b+c)

知识点五:

通过运算解决问题

(三)式与方程

知识点一:

用字母表示数、运算定律和计算公式

知识点二:

方程和等式

1、等式:

表示相等关系的式子叫等式。

2、方程:

含有未知数的等式叫方程。

3、等式和方程的关系:

所有的方程都是等式,但等式不一定是方程。

4、方程的解:

使方程左右两边相等的未知数的值,叫方程的解。

5、解方程:

求方程的解的过程,叫解方程。

知识点三:

列方程解应用题的一般步骤

1、弄清题意,找出未知数并用x表示。

2、找出题中数量间的相等关系,并根据等量关系列出方程。

3、解方程,求出未知数的值。

4、检验并作答。

(四)常见的量

知识点:

常见的计量单位及其进率

1、长度单位:

常见长度单位:

千米(km)米(m)分米(dm)厘米(cm)毫米(mm)

1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米

2、面积单位:

常见的面积单位:

平方千米(km²)公顷(hm²)平方米(m²)平方分米(dm²)平方厘米(cm²)

1平方千米=100公顷1公顷=10000平方米

1平方米=100平方分米1平方分米=100平方厘米

3、体积单位:

常见的体积单位:

立方米(m³)立方分米(dm³)立方厘米(cm³)升(L)毫升(ml)

1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1立方毫米

1升=1000毫升1立方分米=1升1立方厘米=1毫升

4、质量单位:

常见的质量单位:

吨(t)千克(kg)克(g)

1吨=1000千克1千克=1000克

5、时间单位:

常见的时间单位:

世纪年月日时分秒

不能被4整除的年份叫做平年。

能被4整除的年份叫做闰年。

(公历年份是整百数的,必须是400的倍数才是闰年)。

1世纪=100年1年=12个月1天=24小时1小时=60分1分=60秒

28天(平年二月)

1个月=29天(闰年二月)

30天(四、六、九、十一月)

31天(一、三、五、七、八、十、十二月)

1天=24小时1小时=60分1分=60秒

6、人民币的单位:

常用的人民币:

元角分1元=10角1角=10分

名数的改写:

高级单位的名数化成低级单位的名数乘以进率,低级单位的名数化成高级单位的名数除以进率。

(五)比和比例

知识点一:

比和比例的联系与区别

比例

意义

两数相除又叫两个数的比

表示两个比相等的式子叫做比例

各部分名称

0.8:

0.4=2

前项比号后项比值

2:

3=6:

9

外项内项内项外项

基本性质

比的前项和后项都乘上或除以相同的数(0除外),比值不变

在比例中,两外项之积等于两内项之积

化简比的依据

解比例的依据

(四)、比例尺

一幅图的比例尺是指图上距离和实际距离的比。

比例尺有数值比例尺和线段比例尺。

正比例和反比例的意义和判断方法

1.正比例的意义2.反比例的意义3.判断正反比例的方法

一找二看三判断

(1)找变量:

分析数量关系,确定那两种量是相关联的量

(2)看定量:

分析这两种相关联的量,它们之间的关系是商一定,还是积一定。

(3)判断:

如果商一定,就是正比例;如果积一定,就成反比例;如果商或积都不是定量,就不成比例。

 

第二部分空间与图形

(一)图形的认识与测量

知识点一:

平面图形的认识

1、直线、射线和线段

(1)联系与区别

名称

意义

特点

线段

直线上两点间的一段叫做线段。

线段有两个端点,它可以度量长度。

射线

把线段的一端无限延长,就得到一条射线。

射线只有一个端点,它是无限长的,不能度量长度。

直线

把线段的两端无限延长,就可以得到一条直线。

直线没有端点,它是无限长的,不能度量长度。

(2)垂直于平行

a、垂直和垂线:

两条直线相交成直角时,这两条直线互相垂直。

其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

b、平行线:

在同一平面内,不相交的两条直线叫做平行线。

两条平行线之间的距离相等。

同一平面内的两条直线不是平行,就是相交。

c、点到直线的距离:

从直线外的一点向该直线引垂线,从这点到垂足的线段的长,叫做这个点到直线的距离。

2、角的认识

(1)角的意义:

从一点引出的两条射线所组成的图形叫做角。

角的大小与边的长短无关,与两边叉开的大小有关。

(2)角的分类:

锐角:

小于90°的角

直角:

等于90°的角

角钝角:

大于90°而小于180°的角

平角:

等于180°的角

周角:

等于360°的角

3、三角形

(1)三角形的意义:

三角形是由三条线段首尾相接围城的图形。

(2)三角形的特性:

三角形具有稳定性。

(3)三角形的分类:

锐角三角形:

三个角都是锐角的三角形

三角形

按角分直角三角形:

有一个角是直角的三角形

钝角三角形:

有一个角是钝角的三角形

等腰三角形:

两条边相等的三角形

按边分

等边三角形:

三条边都相等的三角形,每个内角都是60°

不等边三角形:

三条边都不相等的三角形

4、四边形的分类

名称

一般四边形

平行四边形

长方形

正方形

梯形

图形

特征

四条边围成

对边平行且相等

有一个角是直角的平行四边形

四边都相等的长方形

只有一组对边平行的四边形

5、圆

(1)圆的意义:

圆是平面上的一种曲线图形。

圆上任意一点到圆心的距离都相等。

(2)圆的各部分名称:

圆心(o)、直径(d)、半径(r)

(3)圆的特征:

a、在同圆或等圆中,d=2r或r=

b、圆是轴对称图形,圆的直径所在的直线都是它的对称轴,因此圆有无数条对称轴。

知识点二:

平面图形的周长和面积

1、周长的意义:

围成一个图形的所有边长的总和,叫做这个图形的周长。

2、平面图形的周长计算公式:

名称

长方形

正方形

平行

四边形

梯形

三角形

图形

 

周长公式

文字公式

长方形的周长=(长+宽)×2

正方形的周长=边长×4

平行四边形的周长=4条边长总和

梯形周长=上、下底加上两腰

三角形周长=三边和

圆周长=圆周率×直径

字母公式

C=2(a+b)

C=4a

C=2(a+b)

C=a+b+c+d

C=a+b+c

C=πd

C=2πr

3、圆周率:

圆的周长与直径的比值叫做圆周率,用“π”表示。

圆周率是一个无限不循环小数,它是一个固定的值,π=3.14159……,在计算时一般只取它的两位小数,即π≈3.14.

4、面积的意义:

物体的表面或围成的平面图形的大小,叫做它们的面积。

5、平面图形面积的计算公式:

名称

长方形

正方形

平行

四边形

梯形

三角形

图形

 

面积公式

文字公式

长方形的面积=长×宽

正方形的面积=边长×边长

平行四边形的面积=底×高

梯形面积=(上底+下底)×高÷2

三角形面积=底×高÷2

圆面积=圆周率×半径的平方

字母公式

S=ab

S=a²

S=ah

S=

(a+b)h

S=

ah

S=πr²

知识点三:

立体图形的认识

1、长方体和正方体的特点:

相同点:

长方体和正方体都有6个面,8个顶点和12条棱。

不同点:

长方体至少有4个面是长方形,而正方体6个面都是正方形。

联系:

正方体可以看作是特殊的长方体。

2、圆柱和圆锥的特点:

(1)圆柱:

圆柱的两个圆面叫底面,周围的面叫侧面。

上、下两底面之间的距离叫圆柱的高。

圆柱有无数条高。

(2)圆锥:

圆锥的圆面叫底面,周围的曲面叫侧面。

顶点到底面圆心的距离叫圆锥的高。

圆锥只有一条高。

3、从不同方向看到的立体图形的形状:

(1)长方体:

从上、下、前、后、左、右看一般会看到长方形,特殊情况下可能看到正方形。

(2)正方体:

从上、下、前、后、左、右看,都会看到一个正方形。

(3)圆柱:

从上或下看,会看到一个圆。

从侧面看,会看到一个长方形或正方形。

(4)圆锥:

从上面看,会看到:

从下面看,会看到:

从侧面看,会看到:

知识点四:

立体图形的表面积和体积

1、表面积的意义:

一个立体图形所有面的面积总和,叫做它的表面积。

2、体积的意义:

一个立体图形所占空间的大小,叫做它的体积。

3、立体图形的表面积和体积的计算公式:

名称

图形

侧面积

表面积

体积

长方体

S=2(a+b)h

S=(ab+ah+bh)×2

V=abh

正方体

S=4a²

S=6a²

V=a³

圆柱

S=Ch

=2πrh

S=Ch+2πr²

V=Sh

=πr²h

圆锥

V=

Sh

=

πr²h

(二)图形与变换

知识点一:

轴对称图形

轴对称图形的意义:

如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形叫做轴对称图形。

这条折痕所在的直线叫做对称轴。

知识点二:

平移和旋转

1、平移:

物体或图形在同一平面内沿直线移动,而本身没有发生方向上的改变,像这样的物体或图形所做的直线运动叫做平移。

平移的两个要素:

一是移动的方向,二是移动的距离。

2、旋转:

物体或图形以一个点或一个轴为中心进行圆周运动,像这样的物体或图形所做的运动叫做旋转。

旋转的三个要素:

一是围绕的定点或轴,二是旋转方向(逆时针方向或顺时针方向),三是旋转角度。

利用图形的平移和旋转,可以设计出美丽的图案。

知识点三:

图形的扩大与缩小

图形按照一定的比例扩大或缩小后,大小改变,形状不变。

知识点四:

设计图案

(三)图形与位置

知识点一:

辨认方向

知识点二:

绘制示意图

在绘制某地点的示意图时,需要把实际距离按一定比例缩小,再画在图纸上,还要确定图上距离和相对应的实际距离的比。

知识点三:

确定物体的位置

1、根据行、列用数对表示物体的位置。

竖排叫做列,横排叫做行,确定第几列一般是从左往右数,确定第几行一般是从前往后(从下往上)数。

数对:

(列数,行数)

2、根据物体的方向和距离可以确定物体的位置。

 

第三部分统计与可能性

知识点一:

统计

1、统计表

统计表分为单式统计表和复式统计表。

2、统计图:

常用的统计图有条形统计图、折线统计图和扇形统计图三种。

(1)条形统计图能清楚地看出各数量的多少。

(2)折线统计图能清楚地看出数量增减变化的情况,也能看出数量的多少。

(3)扇形统计图能清楚地看出各部分占总数的百分比,以及部分与部分之间的关系。

知识点二:

平均数、中位数、众数

平均数、中位数和众数是三个常见的统计量。

(1)平均数:

求平均数的实质就是将几个数量,在总量(和)不变的情况下,通过移多补少,使它们变为相等。

总数量÷总份数=平均数。

(2)中位数:

把调查得到的一组数据,按照大小顺序排列起来,其中处于正中间的那一个数叫做这组数据的中位数。

如果数据是偶数个时,则取正中间的两个数的平均数。

(3)众数:

在一组数据中,出现次数最多的那个数叫做这组数据的众数。

如果一组数据出现次数最多的数据有多个,那么这组数据的众数就有多个。

知识点三:

可能性

可能性知识主要包括:

(1)体验事件发生的等可能性及游戏规则的公平性。

(2)会求一些简单事件发生的可能性。

(3)能设计一个方案,符合指定的要求。

这是对等可能性的一种逆向思维。

(4)对简单事件发生的等可能性做出预测。

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 政史地

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1