数学教案和圆有关的比例线段九年级数学教案模板.docx

上传人:b****4 文档编号:2982568 上传时间:2022-11-16 格式:DOCX 页数:18 大小:28.56KB
下载 相关 举报
数学教案和圆有关的比例线段九年级数学教案模板.docx_第1页
第1页 / 共18页
数学教案和圆有关的比例线段九年级数学教案模板.docx_第2页
第2页 / 共18页
数学教案和圆有关的比例线段九年级数学教案模板.docx_第3页
第3页 / 共18页
数学教案和圆有关的比例线段九年级数学教案模板.docx_第4页
第4页 / 共18页
数学教案和圆有关的比例线段九年级数学教案模板.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

数学教案和圆有关的比例线段九年级数学教案模板.docx

《数学教案和圆有关的比例线段九年级数学教案模板.docx》由会员分享,可在线阅读,更多相关《数学教案和圆有关的比例线段九年级数学教案模板.docx(18页珍藏版)》请在冰豆网上搜索。

数学教案和圆有关的比例线段九年级数学教案模板.docx

数学教案和圆有关的比例线段九年级数学教案模板

数学教案-和圆有关的比例线段_九年级数学教案_模板

教学建议  1、教材分析

  

(1)知识结构

 

  

(2)重点、难点分析

  重点:

相交弦定理及其推论,切割线定理和割线定理.这些定理和推论不但是本节的重点、本章的重点,而且还是中考试题的热点;这些定理和推论是重要的工具性知识,主要应用与圆有关的计算和证明.

  难点:

正确地写出定理中的等积式.因为图形中的线段较多,学生容易混淆.

  2、教学建议

  本节内容需要三个课时.第1课时介绍相交弦定理及其推论,做例1和例2.第2课时介绍切割线定理及其推论,做例3.第3课时是习题课,讲例4并做有关的练3.

  

(1)教师通过教学,组织学生自主观察、发现问题、分析解决问题,逐步培养学生研究性学习意识,激发学生的学习热情;

  

(2)在教学中,引导学生“观察——猜想——证明——应用”等学习,教师组织下,以学生为主体开展教学活动.

第1课时:

相交弦定理

  教学目标:

  1.理解相交弦定理及其推论,并初步会运用它们进行有关的简单证明和计算;

  2.学会作两条已知线段的比例中项;

  3.通过让学生自己发现问题,调动学生的思维积极性,培养学生发现问题的能力和探索精神;

  4.通过推论的推导,向学生渗透由一般到特殊的思想方法.

  教学重点:

  正确理解相交弦定理及其推论.

  教学难点:

  在定理的叙述和应用时,学生往往将半径、直径跟定理中的线段搞混,从而导致证明中发生错误,因此务必使学生清楚定理的提出和证明过程,了解是哪两个三角形相似,从而就可以用对应边成比例的结论直接写出定理.

  教学活动设计

  

(一)设置学习情境

  1、图形变换:

(利用电脑使AB与CD弦变动)

  ①引导学生观察图形,发现规律:

∠A=∠D,∠C=∠B.

  ②进一步得出:

△APC∽△DPB.

  .

  ③如果将图形做些变换,去掉AC和BD,图中线段PA,PB,PC,PO之间的关系会发生变化吗?

为什么?

  组织学生观察,并回答.

  2、证明:

  已知:

弦AB和CD交于⊙O内一点P.

  求证:

PA·PB=PC·PD.

  (A层学生要训练学生写出已知、求证、证明;B、C层学生在老师引导下完成)

  (证明略)

  

(二)定理及推论

  1、相交弦定理:

圆内的两条相交弦,被交点分成的两条线段长的积相等.

  结合图形让学生用数学语言表达相交弦定理:

在⊙O中;弦AB,CD相交于点P,那么PA·PB=PC·PD.

  2、从一般到特殊,发现结论.

  对两条相交弦的位置进行适当的调整,使其中一条是直径,并且它们互相垂直如图,AB是直径,并且AB⊥CD于P.

  提问:

根据相交弦定理,能得到什么结论?

  指出:

PC2=PA·PB.

  请学生用文字语言将这一结论叙述出来,如果叙述不完全、不准确.教师纠正,并板书.

  推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.

  3、深刻理解推论:

由于圆是轴对称图形,上述结论又可叙述为:

半圆上一点C向直径AB作垂线,垂足是P,则PC2=PA·PB. 

  若再连结AC,BC,则在图中又出现了射影定理的基本图形,于是有:

  PC2=PA·PB;AC2=AP·AB;CB2=BP·AB

  (三)应用、反思

  例1已知圆中两条弦相交,第一条弦被交点分为12厘米和16厘米两段,第二条弦的长为32厘米,求第二条弦被交点分成的两段的长.

  引导学生根据题意列出方程并求出相应的解.

  例2 已知:

线段a,b.

  求作:

线段c,使c2=ab.

  分析:

这个作图求作的形式符合相交弦定理的推论的形式,因此可引导学生作出以线段a十b为直径的半圆,仿照推论即可作出要求作的线段.

  作法:

口述作法.

  反思:

这个作图是作两已知线段的比例中项的问题,可以当作基本作图加以应用.同时可启发学生考虑通过其它途径完成作图.

  练习1如图,AP=2厘米,PB=2.5厘米,CP=1厘米,求CD.

  变式练习:

若AP=2厘米,PB=2.5厘米,CP,DP的长度皆为整数.那么CD的长度是多少?

  将条件隐化,增加难度,提高学生学习兴趣

  练习2如图,CD是⊙O的直径,AB⊥CD,垂足为P,AP=4厘米,PD=2厘米.求PO的长.

  练习3 如图:

在⊙O中,P是弦AB上一点,OP⊥PC,PC交⊙O于C. 求证:

PC2=PA·PB 

  引导学生分析:

由AP·PB,联想到相交弦定理,于是想到延长CP交⊙O于D,于是有PC·PD=PA·PB.又根据条件OP⊥PC.易证得PC=PD问题得证.

  (四)小结

  知识:

相交弦定理及其推论;

  能力:

作图能力、发现问题的能力和解决问题的能力;

  思想方法:

学习了由一般到特殊(由定理直接得到推论的过程)的思想方法.

  (五)作业

  教材P132中9,10;P134中B组4

(1).

第2课时切割线定理

  教学目标:

  1.掌握切割线定理及其推论,并初步学会运用它们进行计算和证明;

  2.掌握构造相似三角形证明切割线定理的方法与技巧,培养学生从几何图形归纳出几何性质的能力

  3.能够用运动的观点学习切割线定理及其推论,培养学生辩证唯物主义的观点.

  教学重点:

  理解切割线定理及其推论,它是以后学习中经常用到的重要定理.

  教学难点:

  定理的灵活运用以及定理与推论问的内在联系是难点.

  教学活动设计

  

(一)提出问题

  1、引出问题:

相交弦定理是两弦相交于圆内一点.如果两弦延长交于圆外一点P,那么该点到割线与圆交点的四条线段PA,PB,PC,PD的长之间有什么关系?

(如图1)

  当其中一条割线绕交点旋转到与圆的两交点重合为一点(如图2)时,由圆外这点到割线与圆的两交点的两条线段长和该点的切线长PA,PB,PT之间又有什么关系?

  2、猜想:

引导学生猜想出图中三条线段PT,PA,PB间的关系为PT2=PA·PB.

  3、证明:

  让学生根据图2写出已知、求证,并进行分析、证明猜想.

  分析:

要证PT2=PA·PB, 可以证明,为此可证以PA·PT为边的三角形与以PT,BP为边的三角形相似,于是考虑作辅助线TP,PB.(图3).容易证明∠PTA=∠B又∠P=∠P,因此△BPT∽△TPA,于是问题可证.

   4、引导学生用语言表达上述结论.

  切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.

  

(二)切割线定理的推论

  1、再提出问题:

当PB、PD为两条割线时,线段PA,PB,PC,PD之间有什么关系?

  观察图4,提出猜想:

PA·PB=PC·PD.

  2、组织学生用多种方法证明:

  方法一:

要证PA·PB=PC·PD,可证此可证以PA,PC为边的三角形和以PD,PB为边的三角形相似,所以考虑作辅助线AC,BD,容易证明∠PAC=∠D,∠P=∠P,因此△PAC∽△PDB. (如图4)

  方法二:

要证,还可考虑证明以PA,PD为边的三角形和以PC、PB为边的三角形相似,所以考虑作辅助线AD、CB.容易证明∠B=∠D,又∠P=∠P. 因此△PAD∽△PCB.(如图5)

  方法三:

引导学生再次观察图2,立即会发现.PT2=PA·PB,同时PT2=PC·PD,于是可以得出PA·PB=PC·PD.PA·PB=PC·PD

  推论:

从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.(也叫做割线定理)

  (三)初步应用

  例1 已知:

如图6,⊙O的割线PAB交⊙O于点A和B,PA=6厘米,AB=8厘米,PO=10.9厘米,求⊙O的半径.

  分析:

由于PO既不是⊙O的切线也不是割线,故须将PO延长交⊙O于D,构成了圆的一条割线,而OD又恰好是⊙O的半径,于是运用切割线定理的推论,问题得解.

  (解略)教师示范解题.

   例2 已知如图7,线段AB和⊙O交于点C,D,AC=BD,AE,BF分别切⊙O于点E,F,

  求证:

AE=BF.

  分析:

要证明的两条线段AE,BF均与⊙O相切,且从A、B两点出发引的割线ACD和BDC在同一直线上,且AC=BD,AD=BC. 因此它们的积相等,问题得证.

  学生自主完成,教师随时纠正学生解题过程中出现的错误,如AE2=AC·CD和BF2=BD·DC等.

  巩固练习:

P128练习1、2题 

  (四)小结

  知识:

切割线定理及推论;

  能力:

结合具体图形时,应能写出正确的等积式;

  方法:

在证明切割线定理和推论时,所用的构造相似三角形的方法十分重要,应注意很好地掌握.

  (五)作业教材P132中,11、12题.

探究活动

最佳射门位置

  国际足联规定法国世界杯决赛阶段,比赛场地长105米,宽68米,足蛎趴?

.32米,高2.44米,试确定边锋最佳射门位置(精确到l米).

  分析与解如图1所示.AB是足球门,点P是边锋所在的位置.最佳射门位置应是使球员对足球门视角最大的位置,即向P上方或下方移动,视角都变小,因此点P实际上是过A、B且与边线相切的圆的切点,如图1所示.即OP是圆的切线,而OB是圆的割线.

  故,又,

  OB=30.34+7.32=37.66.

  OP=(米).

  注:

上述解法适用于更一般情形.如图2所示.△BOP可为任意角.

教学建议  1.知识结构:

本小节主要学习正弦、余弦的概念,30°、45°、60°角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等.

  2.重点、难点分析

  

(1)正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三角学的预备知识.有了正弦、余弦函数的定义,再学习正切和余切、解直角三角形、引入任意角三角函数便都有了基础.

  

(2)正弦、余弦的概念隐含着角度与数值之间有一一对应关系的函数思想,并且用含有几个字母的符号组sinA,cosA来表示,学生过去未接触过,所以正弦、余弦的概念是难点.

  3.理解一个锐角的正弦、余弦值的唯一性,是理解三角函数的核心.

  锐角的正弦、余弦值是这样规定的:

当一个锐角确定了,那么这个锐角所在的直角三角形虽然有无穷多个,但它们都是彼此相似的.如上图,当确定时,包含的直角三角形有无穷多个,但它们彼此相似:

  ∽∽∽……因此,由于相似三角形的对应边成比例,所以这些三角形的对应边的比都是相等的.

  

  这就是说,每当一个锐角确定了,包含这个角的直角三角形的上述2种比值也就唯一确定了,它们有确定不变的对应关系.为了简单地表达这些对应关系,我们引入了正(余)弦的说法,创造了sin和cos这样的符号.

  应当注意:

单独写出三角函数的符号或cos等是没有意义的.因为它们离开了确定的锐角是无法显示出它的含义;另一方面,这些符号和角写在一起时(如),它表示的就不再是角,而是一个特定的三角形的两条边的比值了(如).真正理解并掌握这些,才真正掌握了这些符号的含义,才能正确地运用它们.

  4.我们应当学会认识任何位置的直角三角形中的一个锐角的正弦、余弦的表达式.

 

  我们不仅应当熟练掌握如图那样的标准位置的直角三角形的正弦、余弦的表达式,而且能熟练地写出无论怎样放置的直角三角形的正弦、余弦的表达式.如,如图所示,若,则有

  有的直角三角形隐藏在更复杂的图形中,我们也应能正确地写出所需要的三角函数表达式,如图中,ABCD是梯形,,作,我们应

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1