TDSCDMA无线网络优化流程与方法论文.docx

上传人:b****3 文档编号:2979418 上传时间:2022-11-16 格式:DOCX 页数:35 大小:1.34MB
下载 相关 举报
TDSCDMA无线网络优化流程与方法论文.docx_第1页
第1页 / 共35页
TDSCDMA无线网络优化流程与方法论文.docx_第2页
第2页 / 共35页
TDSCDMA无线网络优化流程与方法论文.docx_第3页
第3页 / 共35页
TDSCDMA无线网络优化流程与方法论文.docx_第4页
第4页 / 共35页
TDSCDMA无线网络优化流程与方法论文.docx_第5页
第5页 / 共35页
点击查看更多>>
下载资源
资源描述

TDSCDMA无线网络优化流程与方法论文.docx

《TDSCDMA无线网络优化流程与方法论文.docx》由会员分享,可在线阅读,更多相关《TDSCDMA无线网络优化流程与方法论文.docx(35页珍藏版)》请在冰豆网上搜索。

TDSCDMA无线网络优化流程与方法论文.docx

TDSCDMA无线网络优化流程与方法论文

第一章绪论

1.1选题的依据及意义

随着移动通信的迅速发展和普及,城市规模的不断扩大,摩天大楼和地下设施的大量涌现,室内吸收了大部分的话务量。

NTTDoCoMo的3G商用网络的最新业务统计数据显示(图1.1),在3G网络中室外的业务量(语音和数据)仅占整个网络业务的30.3%,而室内业务占整个网络业务的69.7%,这些场所主要是办公楼、车站和家庭等(图1.2)。

图1.1商用网络用户统计分析

图1.2室内话务量明细

移动通信网络的运营效率和运营收益最终归结于网络质量与网络容量问题,这些问题直接体现在用户与运营商之间的接口上,这正是网络规划和优化所关注的领域。

由于无线传播环境的复杂和多变以及3G网络本身的特性,TD-SCDMA网络优化工作将成为网络运营所极为关注的日常核心工作之一。

与其他制式网络相同,TD-SCDMA网络也会经历规划,优化的阶段,并且TD-SCDMA的网络优化在网络建设,运维的重要性是非常大的。

通过网络优化可以优化网络规划的结果,规避由网络规划不准确带来的一些弊端,使网络性能全面提高,并且同时指导下一阶段的网络规划工作。

网络优化的主要工作是提高网络的性能指标,包括:

(1)容量指标:

反映容量的指标是上下行负载

(2)覆盖指标:

反映覆盖的指标有PCCPCH强度、接收功率、发送功率和覆盖里程比等,PCCPCH强度是反映覆盖质量的关键参数,覆盖里程比是反映网络整体覆盖状况的综合指标。

覆盖的问题主要有无覆盖、越区覆盖、无主覆盖等,覆盖问题容易导致掉话和接入失败,是优化的重点。

(3)质量指标:

对于语音业务,反映业务质量的指标是误帧率;对于数据业务,反映业务质量的指标主要是吞吐率和时延。

(4)成功率指标:

反映成功率指标的参数是业务的掉话率。

导致掉话的主要原因有PCCPCH污染、覆盖不良、无主PCCPCH以及邻区设置不合理等。

(5)切换指标:

反映切换指标的参数是切换成功率。

1.2国内外研究概况

 TD-SCDMA,TimeDivision-SynchronousCodeDivisionMultipleAccess,即时分同步的码分多址技术,是ITU正式发布的第三代移动通信空间接口技术规范之一,它得到了CWTS及3GPP的全面支持。

TD-SCDMA集CDMA、TDMA、FDMA技术优势于一体、系统容量大、频谱利用率高、抗干扰能力强的移动通信技术。

它采用了智能天线、联合检测、接力切换、同步CDMA、软件无线电、低码片速率、多时隙、可变扩频系统、自适应功率调整等技术。

TD-SCDMA为TDD模式,在应用范围内有其自身的特点:

一是终端的移动速度受现有DSP运算速度的限制只能做到240km/h;二是基站覆盖半径在15km以内时频谱利用率和系统容量可达最佳,在用户容量不是很大的区域,基站最大覆盖可达30-40km。

所以,TD-SCDMA适合在城市和城郊使用,在城市和城郊这两个不足均不影响实际使用。

因在城市和城郊,车速一般都小于200km/h,城市和城郊人口密度高,因容量的原因,小区半径一般都在15km以内。

而在农村及大区全覆盖时,用WCDMAFDD方式也是合适的,因此TDD和FDD模式是互为补充的。

TDD模式是基于在无线信道时域里的周期地重复TDMA帧结构实现的。

这个帧结构被再分为几个时隙。

在TDD模式下,可以方便地实现上/下行链路间地灵活切换。

这一模式的突出的优势是,在上/下行链路间的时隙分配可以被一个灵活的转换点改变,以满足不同的业务要求。

这样,运用TD-SCDMA这一技术,通过灵活地改变上/下行链路的转换点就可以实现所有3G对称和非对称业务。

合适的TD-SCDMA时域操作模式可自行解决所有对称和非对称业务以及任何混合业务的上/下行链路资源分配的问题。

TD-SCDMA的无线传输方案综合了FDMA,TDMA和CDMA等基本传输方法。

通过与联合检测相结合,它在传输容量方面表现非凡。

通过引进智能天线,容量还可以进一步提高。

智能天线凭借其定向性降低了小区间频率复用所产生的干扰,并通过更高的频率复用率来提供更高的话务量。

基于高度的业务灵活性,TD-SCDMA无线网络可以通过无线网络控制器(RNC)连接到交换网络,如同三代移动通信中对电路和包交换业务所定义的那样。

在最终的版本里,计划让TD-SCDMA无线网络与INTERNET直接相连。

TD-SCDMA所呈现的先进的移动无线系统是针对所有无线环境下对称和非对称的3G业务所设计的,它运行在不成对的射频频谱上。

TD-SCDMA传输方向的时域自适应资源分配可取得独立于对称业务负载关系的频谱分配的最佳利用率。

因此,TD-SCDMA通过最佳自适应资源的分配和最佳频谱效率,可支持速率从8kbps到2Mbps的语音、互联网等所有的3G业务。

根据ITU的要求和原邮电部的准备,我国于1998年6月底向国际电联提交了我国对IMT2000无线传输技术(RTT)的建议(TD-SCDMA)。

2000年5月5日,国际电联正式公布了第三代移动通信标准,我国提交的TD-SCDMA已正式成为ITU第三代移动通信标准IMT2000建议的一个组成部分。

我国自主知识产权的TD-SCDMA、欧洲WCDMA和美国CDMA2000成为3G时代最主流的技术。

1.2.1TD-SCDMA网络试验和商用概况

2006年,罗马尼亚建成了TD-SCDMA试验网。

2007年,韩国最大的移动通信运营商SK电讯在韩国首都首尔建成了TD-SCDMA试验网。

同年,欧洲第二大电信运营商法国电信建成了TD-SCDMA试验网。

2007年10月,日本电信运营商IPMobile原本计划建设并运营TD-SCDMA网络,但该公司最终受限于资金困境而破产。

2008年1月,中国移动在中国北京、上海、天津、沈阳、广州、深圳、厦门、秦皇岛市建成了TD-SCDMA试验网;中国电信集团公司在中国保定市建成了TD-SCDMA试验网;原中国网络通信公司(现中国联合网络通信集团有限公司)在中国青岛市建成了TD-SCDMA试验网。

2008年4月1日,中国移动在中国北京、上海、天津、沈阳、青岛、广州、深圳、厦门、秦皇岛和保定等10个城市启动TD-SCDMA社会化业务测试和试商用。

截止2008年年末,在中国使用TD-SCDMA网络的3G手机用户已达到41.9万人。

但是TD-SCDMA手机放号首日即出现诸多问题,如网络建设尚未完善、功能尚未全部开发等,因而不少手机用户仍然持观望态度。

2008年9月,中国普天信息产业集团公司为意大利的一家通信公司MYWAVE建设了TD-SCDMA试验网,该网络于9月12日建成并开通;从建设工程仅为11天推算,应为小型企业网。

2009年1月7日,中国政府正式向中国移动颁发了TD-SCDMA业务的经营许可,中国移动也已经开始在中国的28个直辖市、省会城市和计划单列市进行TD-SCDMA的二期网络建设,预计于2009年6月建成并投入商业化运营。

该公司计划到2011年,TD-SCDMA网络能够覆盖中国大陆100%的地市。

TD-SCDMA的发展过程1998年初,在当时的邮电部科技司的直接领导下,由电信科学技术研究院组织队伍在SCDMA技术的基础上,研究和起草符合IMT-2000要求的我国的TD-SCDMA建议草案。

该标准草案以智能天线、同步码分多址、接力切换、时分双工为主要特点,于ITU征集IMT-2000第三代移动通信无线传输技术候选方案的截止日1998年6月30日提交到ITU,从而成为IMT-2000的15个候选方案之一。

ITU综合了各评估组的评估结果,在1999年11月赫尔辛基ITU-RTG8/1第18次会议上和2000年5月在伊斯坦布尔的ITU-R全会上,TD-SCDMA被正式接纳为CDMATDD制式的方案之一。

CWTS(中国无线通信标准研究组)作为代表中国的区域性标准化组织,从1999年5月加入3GPP以后,经过4个月的充分准备,并与3GPPPCG(项目协调组)、TSG(技术规范组)进行了大量协调工作后,在同年9月向3GPP建议将TD-SCDMA纳入3GPP标准规范的工作内容。

1999年12月在法国尼斯的3GPP会议上,我国的提案被3GPPTSGRAN(无线接入网)全会所接受,正式确定将TD-SCDMA纳入到Release2000(后拆分为R4和R5)的工作计划中,并将TD-SCDMA简称为LCRTDD(低码片速率TDD方案)。

经过一年多的时间,经历了几十次工作组会议几百篇提交文稿的讨论,在2001年3月棕榈泉的RAN全会上,随着包含TD-SCDMA标准在内的3GPPR4版本规范的正式发布,TD-SCDMA在3GPP中的融合工作达到了第一个目标。

至此,TD-SCDMA不论在形式上还是在实质上,都已在国际上被广大运营商、设备制造商所认可和接受,形成了真正的国际标准。

1.2.2TD-SCDMA标准的现状

自2001年3月3GPPR4发布后,TD-SCDMA标准规范的实质性工作主要在3GPP体系下完成。

在R4标准发布之后的两年多时间里,大唐与其他众多的业界运营商、设备制造商一起,又经过无数次会议讨论、邮件组讨论,通过提交的大量文稿,对TD-SCDMA标准规范的物理层处理、高层协议栈消息、网络和接口信令消息、射频指标和参数、一致性测试等部分的内容进行了一次次的修订和完善,使得到目前为止的TD-SCDMAR4规范达到了相当稳定和成熟的程度。

在3GPP的体系框架下,经过融合完善后,由于双工方式的差别,TD-SCDMA的所有技术特点和优势得以在空中接口的物理层体现。

物理层技术的差别是TD-SCDMA与WCDMA最主要的差别所在。

在核心网方面,TD-SCDMA与WCDMA采用完全相同的标准规范,包括核心网与无线接入网之间采用相同的lu接口;在空中接口高层协议栈上,TD-SCDMA与WCDMA二者也完全相同。

这些共同之处保证了两个系统之间的无缝漫游、切换、业务支持的一致性、QoS的保证等,也保证了TD-SCDMA和WCDMA在标准技术的后续发展上保持相当的一致性。

2006年1月20日已经被宣布为中国的国家通信标准.(注:

说法不确切。

1月20日国家信息产业部规定为行业标准,而非国家的通信标准)

1.2.3TD-SCDMA标准的后续发展

在3G技术和系统蓬勃发展之际,不论是各个设备制造商、运营商,还是各个研究机构、政府、ITU,都已经开始对3G以后的技术发展方向展开研究。

在ITU认定的几个技术发展方向中,包含了智能天线技术和TDD时分双工技术,认为这两种技术都是以后技术发展的趋势,而智能天线和TDD时分双工这两项技术,在目前的TD-SCDMA标准体系中已经得到了很好的体现和应用,从这一点中,也能够看到TD-SCDMA标准的技术有相当的发展前途。

另外,在R4之后的3GPP版本发布中,TD-SCDMA标准也不同程度地引入了新的技术特性,用以进一步提高系统的性能,其中主要包括:

通过空中接口实现基站之间的同步,作为基站同步的另一个备用方案,尤其适用于紧急情况下对于通信网可靠性的保证;终端定位功能,可以通过智能天线,利用信号到达角对终端用户位置定位,以便更好地提供基于位置的服务;高速下行分组接入,采用混合自动重传、自适应调制编码,实现高速率下行分组业务支持;多天线输入输出技术(MIMO),采用基站和终端多天线技术和信号处理,提高无线系统性能;上行增强技术,采用自适应调制和编码、混合ARQ技术、对专用/共享资源的快速分配以及相应的物理层和高层信令支持的机制,增强上行信道和业务能力。

在政府和运营商的全力支持下,TD-SCDMA产业联盟和产业链已基本建立起来,产品的开发也得到进一步的推动,越来越多的设备制造商纷纷投入到TD-SCDMA产品的开发阵营中来。

随着设备开发、现场试验的大规模开展,TD-SCDMA标准也必将得到进一步的验证和加强。

为了加快TD-SCDMA的产业化进

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 法律文书 > 调解书

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1