九年级数学6.docx

上传人:b****8 文档编号:29727261 上传时间:2023-07-26 格式:DOCX 页数:23 大小:58.08KB
下载 相关 举报
九年级数学6.docx_第1页
第1页 / 共23页
九年级数学6.docx_第2页
第2页 / 共23页
九年级数学6.docx_第3页
第3页 / 共23页
九年级数学6.docx_第4页
第4页 / 共23页
九年级数学6.docx_第5页
第5页 / 共23页
点击查看更多>>
下载资源
资源描述

九年级数学6.docx

《九年级数学6.docx》由会员分享,可在线阅读,更多相关《九年级数学6.docx(23页珍藏版)》请在冰豆网上搜索。

九年级数学6.docx

九年级数学6

冷水中学_九_年级_数学(学科)学案

课题:

1.二次函数

主备人:

张晓审核人:

潘世军

课型:

新授课授课时间:

2013.03.28

一、教学目标:

1.知识目标:

知道二次函数的一般表达式

2.能力目标:

会利用二次函数的概念分析解题

2、教学重点(考点):

二次函数的表达式

三.教学难点:

会利用二次函数的概念分析解题

3、教学流程

(一)设疑自探:

一般地,形如____________________________的函数,叫做二次函数。

其中x是________,a是__________,b是___________,c是_____________.

(二)解疑合探:

1.观察:

①y=6x2;②y=-

x2+30x;③y=200x2+400x+200.这三个式子中,虽然函数有一项的,两项的或三项的,但自变量的最高次项的次数都是______次.一般地,如果y=ax2+bx+c(a、b、c是常数,a≠0),那么y叫做x的_____________.

2.函数y=(m-2)x2+mx-3(m为常数).

(1)当m__________时,该函数为二次函数;

(2)当m__________时,该函数为一次函数.

3.下列函数表达式中,哪些是二次函数?

哪些不是?

若是二次函数,请指出各项对应项的系数.

(1)y=1-3x2

(2)y=3x2+2x(3)y=x(x-5)+2(4)y=3x3+2x2(5)y=x+

(三)质疑再探:

1.y=(m+1)x

-3x+1是二次函数,则m的值为_________________.

2.下列函数中是二次函数的是()

A.y=x+

B.y=3(x-1)2C.y=(x+1)2-x2D.y=

-x

3.在一定条件下,若物体运动的路段s(米)与时间t(秒)之间的关系为

s=5t2+2t,则当t=4秒时,该物体所经过的路程为()

A.28米B.48米C.68米D.88米

4.n支球队参加比赛,每两队之间进行一场比赛.写出比赛的场次数m与球队数n之间的关系式_______________________.

5.已知y与x2成正比例,并且当x=-1时,y=-3.求:

(1)函数y与x的函数关系式;

(2)当x=4时,y的值;(3)当y=-

时,x的值.

6.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图).若设绿化带的BC边长为xm,绿化带的面积为ym2.求y与x之间的函数关系式,并写出自变量x的取值范围.

(四)巩固训练:

1.若函数y=(a-1)x2+2x+a2-1是二次函数,则()

A.a=1B.a=±1C.a≠1D.a≠-1

2.下列函数中,是二次函数的是()

A.y=x2-1B.y=x-1C.y=

D.y=

3.一个长方形的长是宽的2倍,写出这个长方形的面积与宽之间的函数关系式.

4.已知二次函数y=-x2+bx+3.当x=2时,y=3,求这个二次函数解析式.

五:

教学反思:

今天我学到了什么——

今天我的疑惑是——

冷水中学__九_年级___数学__(学科)学案

课题:

第2课时二次函数y=ax2的图象与性质

主备人:

张晓审核人:

潘世军

课型:

新授课授课时间:

2013.03.04

一、教学目标:

1.知识目标:

知道二次函数的图象是一条抛物线;

2.能力目标:

会画二次函数y=ax2的图象

2、教学重点(考点):

会画二次函数y=ax2的图象

3、教学难点:

掌握二次函数y=ax2的性质,并会灵活应用

4、教学流程

(1)设疑自探:

画二次函数y=x2的图象.

【提示:

画图象的一般步骤:

①列表(取几组x、y的对应值;②描点(表中x、y的数值在坐标平面中描点(x,y);③连线(用平滑曲线).】

列表:

x

-3

-2

-1

0

1

2

3

y=x2

描点,并连线

 

由图象可得二次函数y=x2的性质:

1.二次函数y=x2是一条曲线,把这条曲线叫做______________.

2.二次函数y=x2中,二次函数a=_______,抛物线y=x2的图象开口__________.

3.自变量x的取值范围是____________.

4.观察图象,当两点的横坐标互为相反数时,函数y值相等,所描出的各对应点关于________对称,从而图象关于___________对称.

5.抛物线y=x2与它的对称轴的交点(,)叫做抛物线y=x2的_________.

因此,抛物线与对称轴的交点叫做抛物线的_____________.

6.抛物线y=x2有____________点(填“最高”或“最低”)

(2)解疑合探:

例1在同一直角坐标系中,画出函数y=

x2,y=x2,y=2x2的图象.

解:

列表并填:

x

-4

-3

-2

-1

0

1

2

3

4

y=

x2

y=x2的图象刚画过,再把它画出来.

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y=2x2

 

归纳:

抛物线y=

x2,y=x2,y=2x2的二次项系数a_______0;顶点都是__________;

对称轴是_________;顶点是抛物线的最_________点(填“高”或“低”).

(三)质疑再探:

1.抛物线y=ax2的性质

图象(草图)

开口

方向

顶点

对称轴

有最高或最低点

最值

a>0

当x=____时,y有最_______值,是______.

a<0

当x=____时,y有最_______值,是______.

 

2.抛物线y=x2与y=-x2关于________对称,因此,抛物线y=ax2与y=-ax2关于_______

对称,开口大小_______________.

3.当a>0时,a越大,抛物线的开口越___________;

当a<0时,|a|越大,抛物线的开口越_________;

因此,|a|越大,抛物线的开口越________,反之,|a|越小,抛物线的开口越________.

(四)巩固训练:

1.函数y=

x2的图象开口向_______,顶点是__________,对称轴是________,

当x=___________时,有最_________值是_________.

2.二次函数y=mx

有最低点,则m=___________.

3.二次函数y=(k+1)x2的图象如图所示,则k的取值范围为___________.

4.写出一个过点(1,2)的函数表达式_________________

 

五.教学反思:

今天我学到了什么——

今天我的疑惑是——

冷水中学__九__年级_数学_(学科)学案

课题:

二次函数y=ax2+k的图象与性质

主备人:

张晓审核人:

潘世军

课型:

新授课授课时间:

2013.03.08

一、教学目标:

1.知识目标:

.会画二次函数y=ax2+k的图象

2.能力目标:

掌握二次函数y=ax2+k的性质,并会应用;

2、教学重点(考点):

掌握二次函数y=ax2+k的性质

3、教学难点:

二次函数y=ax2与y=的ax2+k的联系

4、教学流程

(一)设疑自探:

在同一直角坐标系中,画出二次函数y=x2+1,y=x2-1的图象.

解:

先列表

x

-3

-2

-1

0

1

2

3

y=x2+1

y=x2-1

描点并画图

观察图象得:

1.

开口方向

顶点

对称轴

有最高(低)点

最值

y=x2

y=x2-1

y=x2+1

2.可以发现,把抛物线y=x2向______平移______个单位,就得到抛物线y=x2+1;把抛物线y=x2向_______平移______个单位,就得到抛物线y=x2-1.

3.抛物线y=x2,y=x2-1与y=x2+1的形状_____________.

2.抛物线y=2x2向上平移3个单位,就得到抛物线__________________;

抛物线y=2x2向下平移4个单位,就得到抛物线__________________.

因此,把抛物线y=ax2向上平移k(k>0)个单位,就得到抛物线_______________;

把抛物线y=ax2向下平移m(m>0)个单位,就得到抛物线_______________.

3.抛物线y=-3x2与y=-3x2+1是通过平移得到的,从而它们的形状__________,由此可得二次函数y=ax2与y=ax2+k的形状__________________.

(二)解疑合探:

函数

草图

开口方向

顶点

对称轴

最值

对称轴右侧的增减性

y=3x2

y=-3x2+1

y=-4x2-5

2.将二次函数y=5x2-3向上平移7个单位后所得到的抛物线解析式为_________________.

3.写出一个顶点坐标为(0,-3),开口方向与抛物线y=-x2的方向相反,形状相同的抛

物线解析式____________________________.

4.抛物线y=4x2+1关于x轴对称的抛物线解析式为______________________.

(三)质疑再探:

y=ax2

y=ax2+k

开口方向

顶点

对称轴

有最高(低)点

最值

a>0时,当x=______时,y有最____值为________;

a<0时,当x=______时,y有最____值为________.

增减性

2.抛物线y=2x2向上平移3个单位,就得到抛物线__________________;

抛物线y=2x2向下平移4个单位,就得到抛物线__________________.

因此,把抛物线y=ax2向上平移k(k>0)个单位,就得到抛物线_______________;

把抛物线y=ax2向下平移m(m>0)个单位,就得到抛物线_______________.

3.抛物线y=-3x2与y=-3x2+1是通过平移得到的,从而它们的形状__________,由此可得二次函数y=ax2与y=ax2+k的形状__________________.

四.巩固训练:

1.填表

函数

开口方向

顶点

对称轴

最值

对称轴左侧的增减性

y=-5x2+3

y=7x2-1

2.抛物线y=-

x2-2可由抛物线y=-

x2+3向___________平移_________个单位得到的.

3.抛物线y=-x2+h的顶点坐标为(0,2),则h=_______________.

 

五.教学反思:

今天我学到了什么——

今天我的疑惑是——

 

冷水中学__九___年级___数学__(学科)学案

课题:

第4课时二次函数y=a(x-h)2的图象与性质

主备人:

张晓审核人:

潘世军

课型:

新授课授课时间:

2013.03.14

一、教学目标:

1.知识目标:

会画二次函数y=a(x-h)2的图象

2.能力目标:

掌握二次函数y=a(x-h)2的性质,并要会灵活应用

2、教学重点(考点):

二次函数y=a(x-h)2的性质,

3、教学难点:

二次函数y=a(x-h)2的灵活应用

4、教学流程

(一)设疑自探:

画出二次函数y=-

(x+1)2,y-

(x-1)2的图象,并考虑它们的开口方向、对称轴、顶点以及最值、增减性.

先列表:

x

-4

-3

-2

-1

0

1

2

3

4

y=-

(x+1)2

y=-

(x-1)2

描点并画图.

函数

开口方向

顶点

对称轴

最值

增减性

y=-

(x+1)2

y=-

(x-1)2

 

(二)解疑合探:

y=ax2

y=ax2+k

y=a(x-h)2

开口方向

 

顶点

 

 

对称轴

 

 

最值

 

 

增减性

(对称轴左侧)

 

 

 

(三)质疑再探:

图象(草图)

开口

方向

顶点

对称轴

最值

对称轴

右侧的增减性

y=

x2

y=-5(x+3)2

y=3(x-3)2

 

四.巩固训练:

1.抛物线y=2(x+3)2的开口______________;顶点坐标为__________________;对称轴是_________;当x>-3时,y______________;当x=-3时,y有_______值是_________.

2.抛物线y=m(x+n)2向左平移2个单位后,得到的函数关系式是y=-4(x-4)2,则

m=__________,n=___________.

3.若将抛物线y=2x2+1向下平移2个单位后,得到的抛物线解析式为_______________.

4.若抛物线y=m(x+1)2过点(1,-4),则m=_______________

 

(五)教学反思:

今天我学到了什么——

今天我的疑惑是—

 

冷水中学__九___年级___数学__(学科)学案

课题:

第5课时二次函数y=a(x-h)2+k的图象与性质

 

主备人:

张晓审核人:

潘世军

课型:

新授课授课时间:

2013.03.17

一、教学目标:

1.知识目标:

会画二次函数的顶点式y=a(x-h)2+k的图象

2.能力目标:

掌握二次函数y=a(x-h)2+k的性质

3.会应用二次函数y=a(x-h)2+k的性质解题

2、教学重点(考点)掌握二次函数y=a(x-h)2+k的性质

3、教学难点:

会应用二次函数y=a(x-h)2+k的性质解题

4、教学流程

(一)设疑自探:

画出函数y=-

(x+1)2-1的图象,指出它的开口方向、对称轴及顶点、最值、增减性.

列表:

x

-4

-3

-2

-1

0

1

2

y=-

(x+1)2-1

 

由图象归纳:

函数

开口方向

顶点

对称轴

最值

增减性

y=-

(x+1)2-1

2.把抛物线y=-

x2向_______平移______个单位,再向_______平移_______个单位,就得到抛物线y=-

(x+1)2-1.

(二)解疑合探:

y=ax2

y=ax2+k

y=a(x-h)2

开口方向

顶点

 

对称轴

 

最值

 

增减性

(对称轴右侧)

 

 

(三)质疑再探:

图象(草图)

开口

方向

顶点

对称轴

最值

对称轴

右侧的增减性

y=

x2

y=-5(x+3)2

y=3(x-3)2

 

四.巩固训练:

1.y=6x2+3与y=6(x-1)2+10_____________相同,而____________不同..顶点坐标为(-2,3),开口方向和大小与抛物线y=

x2相同的解析式为()

A.y=

(x-2)2+3B.y=

(x+2)2-3

C.y=

(x+2)2+3D.y=-

(x+2)2+3

2.二次函数y=(x-1)2+2的最小值为__________________.

3.将抛物线y=5(x-1)2+3先向左平移2个单位,再向下平移4个单位后,得到抛物线的解析式为_______________________.

4.若抛物线y=ax2+k的顶点在直线y=-2上,且x=1时,y=-3,求a、k的值.

 

(五)教学反思:

今天我学到了什么——

今天我的疑惑是—

冷水中学__九___年级___数学__(学科)学案

课题第6课时二次函数y=ax2+bx+c的图象与性质

主备人:

张晓审核人:

潘世军

课型:

新授课授课时间:

2013.03.25

一、教学目标:

1.知识目标:

配方法求二次函数一般式y=ax2+bx+c的顶点坐标、对称轴;

2.能力目标:

熟记二次函数y=ax2+bx+c的顶点坐标公式

3.会画二次函数一般式y=ax2+bx+c的图象

5、教学重点(考点)配方法求二次函数一般式y=ax2+bx+c的顶点坐标、对称轴;

6、教学难点:

熟记二次函数y=ax2+bx+c的顶点坐标公式

7、教学流程

(1)设疑自探:

(2)1.求二次函数y=

x2-6x+21的顶点坐标与对称轴.

解:

将函数等号右边配方:

y=

x2-6x+21

2.画二次函数y=

x2-6x+21的图象.

解:

y=

x2-6x+21配成顶点式为_______________________.

列表:

x

3

4

5

6

7

8

9

y=

x2-6x+21

 

由图象归纳:

函数

开口方向

顶点

对称轴

最值

增减性

y=-

(x+1)2-1

2.把抛物线y=-

x2向_______平移______个单位,再向_______平移_______个单位,就得到抛物线y=-

(x+1)2-1.

(2)解疑合探:

y=ax2

y=ax2+k

y=a(x-h)2

y=a(x-h)2+k

y=ax2+bx+c

开口方向

顶点

 

对称轴

 

最值

 

增减性

(对称轴左侧)

 

(三)质疑再探:

图象(草图)

开口

方向

顶点

对称轴

最值

对称轴

右侧的增减性

y=

x2

y=-5(x+3)2

y=3(x-3)2

1.用配方法求二次函数y=-2x2-4x+1的顶点坐标.

2.用两种方法求二次函数y=3x2+2x的顶点坐标.

3.二次函数y=2x2+bx+c的顶点坐标是(1,-2),则b=________,c=_________.

4.已知二次函数y=-2x2-8x-6,当___________时,y随x的增大而增大;当x=________时,y有_________值是___________.

 

四.巩固训练:

1.用顶点坐标公式和配方法求二次函数y=

x2-2-1的顶点坐标.

2.二次函数y=-x2+mx中,当x=3时,函数值最大,求其最大值.

(五)教学反思:

今天我学到了什么——

今天我的疑惑是—

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 其它课程

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1