数字图像打印.docx
《数字图像打印.docx》由会员分享,可在线阅读,更多相关《数字图像打印.docx(19页珍藏版)》请在冰豆网上搜索。
数字图像打印
(1)名词解释
RGBRedGreenBlue,红绿蓝三原色
CMYKCyanMagentayellowblacK,青、品红、黄、黑,用于印刷的四分色
HISHorizontalSituationIndicator水平位置指示器
FFTFastFourierTransformAlgorithm(method)快速傅氏变换算法
CWTcontinuouswavelettransform连续小波变换
DCTDiscreteCosineTransform离散余弦变换
DWTDiscreteWaveletTransform离散小波变换
CCDChargeCoupledDevice电荷耦合装置
Pixel:
adigitalimageiscomposedofafinitenumberofelements,eachofwhichhasaparticularlicationandvalue,theseelementsarecalledpixel像素
DCcomponentinfrequencydomain频域直流分量
GLH GrayLevelHistogram灰度直方图
Mather(basic)wavelet:
afunction(wave)usedtogenerateasetofwavelets,母小波,用于产生小波变换所需的一序列子小波
Basisfunctionsbasisimage:
thereisonlyonesetofαkforanygivenf(x),thentheψk(x)arecalledbasisfunctions基函数基图像
Multi-scaleanalysis多尺度分析
Gaussianfunction:
isafunctionoftheform:
forsomerealconstantsa0,b,c0,ande≈2.718281828(Euler’snumber).对于一些真正的常量0,b,c0,和e≈2.718281828(欧拉数)。
高斯函数
sharpeningfilter锐化滤波器
Smoothingfilter/convolution平滑滤波器/卷积
smoothing filter are used for blurring and for noise reduction平滑滤波器用于模糊处理和降低噪声/卷积
Imageenhancement/imagerestoration图像增强和图像恢复
空间域滤波Spatialdomainfiltering:
频率域滤波Frequencydomainfiltering:
Frequencydomainfilteringwithavariablefrequencyforthesignalfiltering以频率作为变量对信号进行滤波
空间分辨率:
spatialresolutionisameasureofthesmallestdiscernibledetailinanimage.图像中可辨别的最小细节的度量
灰度分辨率:
Intensityresolutionreferstothesmallestdiscerniblechangeinintensitylevel.灰度分辨率是指在灰度级中可分辨的最小变化
取样sampling:
Digitizingthecoordinatevaluesiscalledsampling.对坐标值进行数字化
量化quantization:
Digitizingtheamplitudevaluesiscalledquantization.对幅值数字化
图像压缩:
Imagecompression,theartandscienceofreducingtheamountofdatarequiredtorepresentanimage.图像压缩是一种减少描绘一幅图像所需数据量的技术和科学.
(2)问答题
1.Citeoneexampleofdigitalimageprocessing
Answer:
Inthedomainofmedicalimageprocessingwemayneedtoinspectacertainclassofimagesgeneratedbyanelectronmicroscopetoeliminatebright,isolateddotsthatarenointerest.
2.Citeoneexampleofspatialoperation举一个空间操作的例子
Answer:
Inthedomainofmedicalimageprocessingwemayneedtoinspectacertainclassofimagesgeneratedbyanelectronmicroscopetoeliminatebright,isolateddotsthatarenointerest.
3.Citeoneexampleoffrequencydomainoperationfromthefollowingprocessingresult,makeageneralcommentaboutidealhighpassfilter(figureB)andGaussianhighpassfilter(figureD)
A.Originalimage
B.idealhighpassfilter
Incontrasttotheideallowpassfilter,itistoletallthesignalsabovethecutofffrequencyfcwithoutloss,andtomakeallthesignalsbelowthecutofffrequencyofFCwithoutlossof.
C.theresultofidealhighpassfilter
D.Gaussianhighpassfilter
Highpassfilter,alsoknownas"lowresistancefilter",itisaninhibitoryspectrumofthelowfrequencysignalandretainhighfrequencysignalmodel(ordevice).Highpassfiltercanmakethehighfrequencycomponents,whilethehigh-frequencypartofthefrequencyintheimageofthesharpchangeinthegrayarea,whichisoftentheedgeoftheobject.Sohighpassfiltercanmaketheimagegetsharpeningprocessing
E.TheresultofGaussianfilter
3.Theoriginalimage,theideallowpassfilterandGaussianlowpassfilterareshownbelowBndC.DandEaretheresultoftheeitherfilterBorC
A.Drawlinestoconnectthefilterwiththeirresult
B.Explainthedifferenceofthetwofilters
Duetoexcessivecharacteristicsoftheideallow-passfiltertoofastJun,itwillproducearingingphenomenon.OvercharacteristicsofGaussfilterisveryflat,soitisnotringing
4.Whatistheresultwhenapplyinganaveragingmaskwiththesize1X1?
Nochange
5.StatetheconceptoftheNyquistsamplingtheoremfromthefigurebelovy
Thelawofsamplingprocessshouldbefollowed,alsocalledthesamplingtheoremandthesamplingtheorem.Thesamplingtheoremshowstherelationshipbetweenthesamplingfrequencyandthesignalspectrum,anditisthebasicbasisofthecontinuoussignaldiscretization.Inanalog/digitalsignalconversionprocess,whenthesamplingfrequencyfs.maxgreaterthan2timesthehighestfrequencypresentinthesignalFmaxfs.max>2fmax,samplingdigitalsignalcompletelyretainedtheinformationintheoriginalsignal,thegeneralpracticalapplicationassurancesamplingfrequencyis5~10timeshigherthanthatofthesignalofthehighfrequency;samplingtheorem,alsoknownastheNyquisttheorem
6.Ameanfilterisalinearfilterbutamedianfilterisnot,why?
Thebasicprincipleoflinearfilteringistoreplacetheoriginalimagewiththemeanvalueofeachpixel,butmedianfilterreplacetheoriginalimagewiththemedianvalueofeachpixel.Thevalueofmeanandmedianisdifferent.
7.Fundamental Steps in images Digital image Processing 数字图像图像处理的基本步骤
image acquisition—>image enhancement—>image restoration—>Color image processing—>wavelets—>compression(压缩)—>morphological processing(形态学理)—>segmentation(分割)—>representation and description(表示与描述)—>recognition(识别)
8.WiththechromaticitydiagrambellowgiveabriefdescriptiontotheRGBcolormodel.Andthesethreecolorsenoughtocomposeallvisiblecolors?
Answer:
ImagesrepresentedintheRGBcolormodelconsistofthreecomponentimages,oneforeachprimarycolor.
Thesethreecolorsenoughtocomposeallvisiblecolors
(3)算法题
1.ThefollowingmatrixAisa3*3imageandBis3*3Laplacianmask,whatwillbetheresultingimage?
(Notethattheelementsbeyondtheborderremainunchanged)
2.DevelopanalgorithmtoobtaintheprocessingresultBfromoriginalimageA
3.Developanalgorithmwhichcomputesthepseudocolorimageprocessingbymeansoffouriertramsform
Answer:
Thestepsoftheprocessareasfollow:
(1)Multiplytheinputimagef(x,y)by(-1)x+ytocenterthetransform;
(2)ComputetheDFToftheimagefrom
(1)togetpowerspectrumF(u,v)ofFouriertransform.
(3)Multiplybyafilterfunctionh(u,v).
(4)ComputetheinverseDFToftheresultin(3).
(5)Obtaintherealpartoftheresultin(4).
(6)Multiplytheresultin(5)by(-1)x+y
4.Developanalgorithmtogenerateapproximationimageseriesshowninthefollowingfigureb**meansofdownsampling
5.DevelopanalgorithmwhichimplementsfrequencydomainfilteringbymeansofFouriertransform.
Answer:
Thestepsoftheprocessareasfollow:
(1)Multiplytheinputimagef(x,y)by(-1)x+ytocenterthetransform;
(1)将输入图像f(x,y)的(-1)x+y为中心的变换;
(2)ComputetheDFToftheimagefrom
(1)togetpowerspectrumF(u,v)ofFouriertransform.
计算图像的DFT从
(1)得到的功率谱f(u,v)的傅里叶变换。
Multiplybyafilterfunctionh(u,v)
乘以一个滤波器函数h(u,v).
ComputetheinverseDFToftheresultin(3).
计算(3)中的结果DFT的逆
Obtaintherealpartoftheresultin(4).
获得(4)结果中的实部
Multiplytheresultin(5)by(-1)x+y
(-1)x+y乘以(5)中的结果.
5.Losslessapproaches—HoffmanCoding无损方法-霍夫曼编码
步骤:
(1)createofsourcereductionsbyorderingthesymbolsunderconsiderationandcombiningthelowestprobabilitysymbolsintoasinglesymbolsthatreplacestheminthenextsourcereduction.
(2)Codeeachreducedsource,startingwiththesmallestsourceandworkingbacktotheoriginalsource.
(4)编程题
1)Therearetwosatellitephotosofnightasblew.WriteaprogramwithMATLABtotellwhichisbrighter
代码:
A=imread(’1.jgp’);
B=imread(‘2.jpg’);
[m,n]=size(A);
fori=1:
m
forj=1:
n
sum1=sum1+A[I,j];
end
end
avg1=sum1/m*n;
[r,c]=size(B);
fori=1:
m
forj=1:
n
sum2=sum2+B[I,j];
end
end
avg2=sum2/m*n;
2)An8*8imagef(i,i)hasgraylevelsgivenbythefollowingequation:
f(i,i)=|i-j|,i,j=0,1….,7
Writeaprogramtofindtheoutputimageobtainedbyapplyinga3*3medianfilterontheimagef(i,j);notethattheborderpixelsremainunchanged.
Ansewr:
function[r]=avgfilter(gray,n)
a(1:
n,1:
n)=1;
[row,col]=size(gray);
gray1=double(gray);
gray2=gray1;
fori=1:
row-n+1
forj=1:
col-n+1
c=gray1(i:
i+(n-1),j:
j+(n-1)).*a;
s=sum(sum(c));
gray2(i+(n-1)/2,j+(n-1)/2)=s/(n*n);
end
end
r=uint8(gray2);
>>avg3=avgfilter(noise,3);
>>avg5=avgfilter(noise,5);
>>avg7=avgfilter(noise,7);
>>subplot(221);imshow(noise);title('原噪声图');
>>subplot(222);imshow(avg3);title('3*3均值滤波图');
>>subplot(223);imshow(avg5);title('5*5均值滤波图');
>>subplot(224);imshow(avg7);title('7*7均值滤波图');
1.DesignanadaptivelocalnoisereductionfilterandapplyittoanimagewithGaussiannoise.Comparetheperformanceoftheadaptivelocalnoisereductionfilterwitharithmeticmeanandgeometricmeanfilter.
Answer:
clear
closeall;
rt=imread('E:
\数字图像处理\yy.bmp');
gray=rgb2gray(rt);
subplot(2,3,1);imshow(rt);
title('原图像');
subplot(2,3,2);imshow(gray);
title('原灰度图像');
rtg=im2double(gray);
rtg=imnoise(rtg,'gaussian',0,0.005)%加入均值为0,方差为0.005的高斯噪声
subplot(2,3,3);imshow(rtg);
title('高噪点处理后的图像');
[a,b]=size(rtg);
n=3;
smax=7;
nrt=zeros(a+(smax-1),b+(smax-1));
fori=((smax-1)/2+1):
(a+(smax-1)/2)
forj=((smax-1)/2+1):
(b+(smax-1)/2)
nrt(i,j)=rtg(i-(smax-1)/2,j-(smax-1)/2);
end
end
figure;
imshow(nrt);
title('扩充后的图像');
nrt2=zeros(a,b);
fori=n+1:
a+n
forj=n+1:
b+n
form1=3:
2
m2=(m1-1)/2;
c=nrt2(i-m2:
i+m2,j-m2:
j+m2);%使用7*7的滤波器
Zmed=median(median(c));
Zmin=min(min(c));
Zmax=max(max(c));
A1=Zmed-Zmin;
A2=Zmed-Zmax;
if(A1>0&&A2<0)
B1=nrt2(i,j)-Zmin;
B2=nrt2(i,j)-Zmax;
if(B1>0&&B2<0)
nrt2(i,j)=nrt2(i,j);
else
nrt2(i,j)=Zmed;
end
continue;
end
end
end
end
nrt3=im2uint8(nrt2);
figure;
imshow(nrt3);
title('自适应中值滤波图');
2.ImplementWienerfilterwith“wiener2”functionofMatLabtoanimagewithGaussiannoiseandcomparetheperformancewithadaptivelocalnoisereductionfilter.
代码如下:
>>I=imread('E:
\数字图像处理\yy.bmp');
>>J=rgb2gray(I);
>>K=imnoise(J,'gaussian',0,0.005);
>>L=wiener2(K,[55]);