数字图像打印.docx

上传人:b****5 文档编号:29720796 上传时间:2023-07-26 格式:DOCX 页数:19 大小:47.03KB
下载 相关 举报
数字图像打印.docx_第1页
第1页 / 共19页
数字图像打印.docx_第2页
第2页 / 共19页
数字图像打印.docx_第3页
第3页 / 共19页
数字图像打印.docx_第4页
第4页 / 共19页
数字图像打印.docx_第5页
第5页 / 共19页
点击查看更多>>
下载资源
资源描述

数字图像打印.docx

《数字图像打印.docx》由会员分享,可在线阅读,更多相关《数字图像打印.docx(19页珍藏版)》请在冰豆网上搜索。

数字图像打印.docx

数字图像打印

(1)名词解释

RGBRedGreenBlue,红绿蓝三原色

CMYKCyanMagentayellowblacK,青、品红、黄、黑,用于印刷的四分色

HISHorizontalSituationIndicator水平位置指示器

FFTFastFourierTransformAlgorithm(method)快速傅氏变换算法

CWTcontinuouswavelettransform连续小波变换

DCTDiscreteCosineTransform离散余弦变换

DWTDiscreteWaveletTransform离散小波变换

CCDChargeCoupledDevice电荷耦合装置

Pixel:

adigitalimageiscomposedofafinitenumberofelements,eachofwhichhasaparticularlicationandvalue,theseelementsarecalledpixel像素

DCcomponentinfrequencydomain频域直流分量

GLH GrayLevelHistogram灰度直方图

Mather(basic)wavelet:

afunction(wave)usedtogenerateasetofwavelets,母小波,用于产生小波变换所需的一序列子小波

Basisfunctionsbasisimage:

thereisonlyonesetofαkforanygivenf(x),thentheψk(x)arecalledbasisfunctions基函数基图像

Multi-scaleanalysis多尺度分析

Gaussianfunction:

isafunctionoftheform:

forsomerealconstantsa0,b,c0,ande≈2.718281828(Euler’snumber).对于一些真正的常量0,b,c0,和e≈2.718281828(欧拉数)。

高斯函数

sharpeningfilter锐化滤波器

Smoothingfilter/convolution平滑滤波器/卷积

smoothing filter are used for blurring and for noise reduction平滑滤波器用于模糊处理和降低噪声/卷积

Imageenhancement/imagerestoration图像增强和图像恢复

空间域滤波Spatialdomainfiltering:

频率域滤波Frequencydomainfiltering:

Frequencydomainfilteringwithavariablefrequencyforthesignalfiltering以频率作为变量对信号进行滤波

空间分辨率:

spatialresolutionisameasureofthesmallestdiscernibledetailinanimage.图像中可辨别的最小细节的度量

灰度分辨率:

Intensityresolutionreferstothesmallestdiscerniblechangeinintensitylevel.灰度分辨率是指在灰度级中可分辨的最小变化

取样sampling:

Digitizingthecoordinatevaluesiscalledsampling.对坐标值进行数字化

量化quantization:

Digitizingtheamplitudevaluesiscalledquantization.对幅值数字化

图像压缩:

Imagecompression,theartandscienceofreducingtheamountofdatarequiredtorepresentanimage.图像压缩是一种减少描绘一幅图像所需数据量的技术和科学.

(2)问答题

1.Citeoneexampleofdigitalimageprocessing

Answer:

Inthedomainofmedicalimageprocessingwemayneedtoinspectacertainclassofimagesgeneratedbyanelectronmicroscopetoeliminatebright,isolateddotsthatarenointerest.

2.Citeoneexampleofspatialoperation举一个空间操作的例子

Answer:

Inthedomainofmedicalimageprocessingwemayneedtoinspectacertainclassofimagesgeneratedbyanelectronmicroscopetoeliminatebright,isolateddotsthatarenointerest.

3.Citeoneexampleoffrequencydomainoperationfromthefollowingprocessingresult,makeageneralcommentaboutidealhighpassfilter(figureB)andGaussianhighpassfilter(figureD)

A.Originalimage

B.idealhighpassfilter

Incontrasttotheideallowpassfilter,itistoletallthesignalsabovethecutofffrequencyfcwithoutloss,andtomakeallthesignalsbelowthecutofffrequencyofFCwithoutlossof.

C.theresultofidealhighpassfilter

D.Gaussianhighpassfilter

Highpassfilter,alsoknownas"lowresistancefilter",itisaninhibitoryspectrumofthelowfrequencysignalandretainhighfrequencysignalmodel(ordevice).Highpassfiltercanmakethehighfrequencycomponents,whilethehigh-frequencypartofthefrequencyintheimageofthesharpchangeinthegrayarea,whichisoftentheedgeoftheobject.Sohighpassfiltercanmaketheimagegetsharpeningprocessing

E.TheresultofGaussianfilter

3.Theoriginalimage,theideallowpassfilterandGaussianlowpassfilterareshownbelowBndC.DandEaretheresultoftheeitherfilterBorC

A.Drawlinestoconnectthefilterwiththeirresult

B.Explainthedifferenceofthetwofilters

Duetoexcessivecharacteristicsoftheideallow-passfiltertoofastJun,itwillproducearingingphenomenon.OvercharacteristicsofGaussfilterisveryflat,soitisnotringing

4.Whatistheresultwhenapplyinganaveragingmaskwiththesize1X1?

Nochange

5.StatetheconceptoftheNyquistsamplingtheoremfromthefigurebelovy

Thelawofsamplingprocessshouldbefollowed,alsocalledthesamplingtheoremandthesamplingtheorem.Thesamplingtheoremshowstherelationshipbetweenthesamplingfrequencyandthesignalspectrum,anditisthebasicbasisofthecontinuoussignaldiscretization.Inanalog/digitalsignalconversionprocess,whenthesamplingfrequencyfs.maxgreaterthan2timesthehighestfrequencypresentinthesignalFmaxfs.max>2fmax,samplingdigitalsignalcompletelyretainedtheinformationintheoriginalsignal,thegeneralpracticalapplicationassurancesamplingfrequencyis5~10timeshigherthanthatofthesignalofthehighfrequency;samplingtheorem,alsoknownastheNyquisttheorem

6.Ameanfilterisalinearfilterbutamedianfilterisnot,why?

Thebasicprincipleoflinearfilteringistoreplacetheoriginalimagewiththemeanvalueofeachpixel,butmedianfilterreplacetheoriginalimagewiththemedianvalueofeachpixel.Thevalueofmeanandmedianisdifferent.

7.Fundamental Steps in images Digital image Processing 数字图像图像处理的基本步骤

image acquisition—>image enhancement—>image restoration—>Color image processing—>wavelets—>compression(压缩)—>morphological processing(形态学理)—>segmentation(分割)—>representation and description(表示与描述)—>recognition(识别)

8.WiththechromaticitydiagrambellowgiveabriefdescriptiontotheRGBcolormodel.Andthesethreecolorsenoughtocomposeallvisiblecolors?

Answer:

ImagesrepresentedintheRGBcolormodelconsistofthreecomponentimages,oneforeachprimarycolor.

Thesethreecolorsenoughtocomposeallvisiblecolors

(3)算法题

1.ThefollowingmatrixAisa3*3imageandBis3*3Laplacianmask,whatwillbetheresultingimage?

(Notethattheelementsbeyondtheborderremainunchanged)

2.DevelopanalgorithmtoobtaintheprocessingresultBfromoriginalimageA

3.Developanalgorithmwhichcomputesthepseudocolorimageprocessingbymeansoffouriertramsform

Answer:

Thestepsoftheprocessareasfollow:

(1)Multiplytheinputimagef(x,y)by(-1)x+ytocenterthetransform;

(2)ComputetheDFToftheimagefrom

(1)togetpowerspectrumF(u,v)ofFouriertransform.

(3)Multiplybyafilterfunctionh(u,v).

(4)ComputetheinverseDFToftheresultin(3).

(5)Obtaintherealpartoftheresultin(4).

(6)Multiplytheresultin(5)by(-1)x+y

4.Developanalgorithmtogenerateapproximationimageseriesshowninthefollowingfigureb**meansofdownsampling

5.DevelopanalgorithmwhichimplementsfrequencydomainfilteringbymeansofFouriertransform.

Answer:

Thestepsoftheprocessareasfollow:

(1)Multiplytheinputimagef(x,y)by(-1)x+ytocenterthetransform;

(1)将输入图像f(x,y)的(-1)x+y为中心的变换;

(2)ComputetheDFToftheimagefrom

(1)togetpowerspectrumF(u,v)ofFouriertransform.

计算图像的DFT从

(1)得到的功率谱f(u,v)的傅里叶变换。

Multiplybyafilterfunctionh(u,v)

乘以一个滤波器函数h(u,v).

ComputetheinverseDFToftheresultin(3).

计算(3)中的结果DFT的逆

Obtaintherealpartoftheresultin(4).

获得(4)结果中的实部

Multiplytheresultin(5)by(-1)x+y

(-1)x+y乘以(5)中的结果.

5.Losslessapproaches—HoffmanCoding无损方法-霍夫曼编码

步骤:

(1)createofsourcereductionsbyorderingthesymbolsunderconsiderationandcombiningthelowestprobabilitysymbolsintoasinglesymbolsthatreplacestheminthenextsourcereduction.

(2)Codeeachreducedsource,startingwiththesmallestsourceandworkingbacktotheoriginalsource.

(4)编程题

1)Therearetwosatellitephotosofnightasblew.WriteaprogramwithMATLABtotellwhichisbrighter

代码:

A=imread(’1.jgp’);

B=imread(‘2.jpg’);

[m,n]=size(A);

fori=1:

m

forj=1:

n

sum1=sum1+A[I,j];

end

end

avg1=sum1/m*n;

[r,c]=size(B);

fori=1:

m

forj=1:

n

sum2=sum2+B[I,j];

end

end

avg2=sum2/m*n;

2)An8*8imagef(i,i)hasgraylevelsgivenbythefollowingequation:

f(i,i)=|i-j|,i,j=0,1….,7

Writeaprogramtofindtheoutputimageobtainedbyapplyinga3*3medianfilterontheimagef(i,j);notethattheborderpixelsremainunchanged.

Ansewr:

function[r]=avgfilter(gray,n)

a(1:

n,1:

n)=1;

[row,col]=size(gray);

gray1=double(gray);

gray2=gray1;

fori=1:

row-n+1

forj=1:

col-n+1

c=gray1(i:

i+(n-1),j:

j+(n-1)).*a;

s=sum(sum(c));

gray2(i+(n-1)/2,j+(n-1)/2)=s/(n*n);

end

end

r=uint8(gray2);

>>avg3=avgfilter(noise,3);

>>avg5=avgfilter(noise,5);

>>avg7=avgfilter(noise,7);

>>subplot(221);imshow(noise);title('原噪声图');

>>subplot(222);imshow(avg3);title('3*3均值滤波图');

>>subplot(223);imshow(avg5);title('5*5均值滤波图');

>>subplot(224);imshow(avg7);title('7*7均值滤波图');

1.DesignanadaptivelocalnoisereductionfilterandapplyittoanimagewithGaussiannoise.Comparetheperformanceoftheadaptivelocalnoisereductionfilterwitharithmeticmeanandgeometricmeanfilter.

Answer:

clear

closeall;

rt=imread('E:

\数字图像处理\yy.bmp');

gray=rgb2gray(rt);

subplot(2,3,1);imshow(rt);

title('原图像');

subplot(2,3,2);imshow(gray);

title('原灰度图像');

rtg=im2double(gray);

rtg=imnoise(rtg,'gaussian',0,0.005)%加入均值为0,方差为0.005的高斯噪声

subplot(2,3,3);imshow(rtg);

title('高噪点处理后的图像');

[a,b]=size(rtg);

n=3;

smax=7;

nrt=zeros(a+(smax-1),b+(smax-1));

fori=((smax-1)/2+1):

(a+(smax-1)/2)

forj=((smax-1)/2+1):

(b+(smax-1)/2)

nrt(i,j)=rtg(i-(smax-1)/2,j-(smax-1)/2);

end

end

figure;

imshow(nrt);

title('扩充后的图像');

nrt2=zeros(a,b);

fori=n+1:

a+n

forj=n+1:

b+n

form1=3:

2

m2=(m1-1)/2;

c=nrt2(i-m2:

i+m2,j-m2:

j+m2);%使用7*7的滤波器

Zmed=median(median(c));

Zmin=min(min(c));

Zmax=max(max(c));

A1=Zmed-Zmin;

A2=Zmed-Zmax;

if(A1>0&&A2<0)

B1=nrt2(i,j)-Zmin;

B2=nrt2(i,j)-Zmax;

if(B1>0&&B2<0)

nrt2(i,j)=nrt2(i,j);

else

nrt2(i,j)=Zmed;

end

continue;

end

end

end

end

nrt3=im2uint8(nrt2);

figure;

imshow(nrt3);

title('自适应中值滤波图');

2.ImplementWienerfilterwith“wiener2”functionofMatLabtoanimagewithGaussiannoiseandcomparetheperformancewithadaptivelocalnoisereductionfilter.

代码如下:

>>I=imread('E:

\数字图像处理\yy.bmp');

>>J=rgb2gray(I);

>>K=imnoise(J,'gaussian',0,0.005);

>>L=wiener2(K,[55]);

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 艺术创意

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1