乐高小车无线控制系统设计.docx

上传人:b****8 文档编号:29678499 上传时间:2023-07-26 格式:DOCX 页数:44 大小:1.57MB
下载 相关 举报
乐高小车无线控制系统设计.docx_第1页
第1页 / 共44页
乐高小车无线控制系统设计.docx_第2页
第2页 / 共44页
乐高小车无线控制系统设计.docx_第3页
第3页 / 共44页
乐高小车无线控制系统设计.docx_第4页
第4页 / 共44页
乐高小车无线控制系统设计.docx_第5页
第5页 / 共44页
点击查看更多>>
下载资源
资源描述

乐高小车无线控制系统设计.docx

《乐高小车无线控制系统设计.docx》由会员分享,可在线阅读,更多相关《乐高小车无线控制系统设计.docx(44页珍藏版)》请在冰豆网上搜索。

乐高小车无线控制系统设计.docx

乐高小车无线控制系统设计

基于PLC的变频调速恒压供水系统设计

摘要:

针对目前的小区供水系统中存在的电能、水资源浪费且供水质量差等问题,研究并设计一种变频调速恒压供水系统。

以管网水压为设定参数,根据用水量的大小由PLC控制投入运行的水泵的数量及电机的转速,实现管网水压的闭环调节,即实现恒压供水。

本设计比较详细的介绍小区供水系统的设计工程,此控制系统采用西门子S7-200系列PLC的CPU224型作为核心控制设备。

在该控制系统中,变频器的控制方式采用模拟量输入和通信输出控制,通过PID指令实现闭环控制,达到了小区供水系统的控制要求。

本系统包含三台水泵电机,它们组成变频循环运行方式。

采用变频器实现对三相水泵电机的软启动和变频调速,运行切换采用“先启先停”的原则。

压力传感器检测当前水压信号,送入PLC与设定值比较后进行PID运算,从而控制变频器的输出电压和频率,进而改变水泵电机的转速来改变供水量,最终保持管网压力稳定在设定值附近。

通过工控机与PLC的连接,采用组态软件完成系统监控,实现了运行状态动态显示及数据、报警的查询。

关键词:

PLC;变频;供水;恒压

 

 

BasedonPLCvariablefrequencyspeedregulationofconstantpressurewatersupplysystemdesign

Abstract:

Forelectricity,waterandwasteinthedistrictwatersupplysystemandwatersupplyandpoorquality,researchanddesignofafrequencycontrolwatersupplysystem.PipenetworkwaterpressuresetparameterstocontrolthespeedofthenumberofpumpsandmotorsputintooperationbythePLCaccordingtothesizeofwaterpipenetworkwaterpressureclosedloopregulation,ie,constantpressurewatersupply.Thisdesignisthedetailedintroductionwatersupplysystemofcommunitydesignengineering,thecontrolsystemadoptsSiemensS7-200PLCCPU224typeseriesasthekeycontrolequipment.Inthecontrolsystem,theinvertercontrolmodeusinganalogueinputsandcommunicationoutputcontrol,throughthePIDclosed-loopcontroltoachieveinstructionstothedistrictwatersupplysystemcontrolrequirements.Inthedesignprocessforthis,Icheckdataandmeetaproblem,timelyaskclassmatesandteachers,gottimelycorrective.

Thissystemisformedbythreepumpgenerators,andtheyformthecirculatingrunmodeoffrequencyconversion.Withgeneralfrequencyconverterrealizeforthreephasepumpgeneratorsoftstartwithfrequencycontrol,operationswitchadoptstheprincipleof”startfirststopfirst”.Thedetectionsignalofpressuresensorofhydraulicpressure,viaPLCwithsetvaluebycarryoutPIDcomparisonoperation,so,controlfrequencyandtheexportvoltageoffrequencyconverter,andthentherotationalspeedthatchangespumpgeneratorcometochangewatersupplyquantity,eventually,itisnearbytomaintainpipenetpressuretostabilizewhensetvalue.ThroughworkcontrolmachinetheconnectionwithPLC,withgroupformsoftwareconsummatelysystematicmonitoring,haverealizedoperationstatedevelopmenttoshowanddata,reporttothepoliceinquiry.

Keywords:

PLC;frequency;watersupply;constantpressure

 

 

1绪论

1.1课题的提出背景

随着我国社会经济的发展,城市建设发展十分迅速,同时也对基础设施建设提出了更高的要求。

供水系统的建设是其中的一个重要方面,供水的可靠性、稳定性、经济性直接影响到用户的正常工作和生活,也直接体现了供水管理水平的高低。

传统供水厂,特别是中小供水厂所普遍采用的恒速泵加压供水方式存在效率较低、可靠性不高、自动化程度低等缺点,难以满足当前经济生活的需要。

随着人们对供水质量和供水系统可靠性要求的不断提高,需要利用先进的自动化技术、控制技术以及通讯技术,要求设计出高性能、高节能、能适应供水复杂环境的恒压供水系统成为必然趋势。

供水系统在各行各业的生产和生活中起着至关重要的作用。

如何保证供水系统安全、可靠、稳定地运行是很多行业都关注的问题。

把先进的PLC控制技术和变频技术等自动化控制技术应用到供水领域,成为对供水系统的要求。

通常,供水系统全天各时段用水量变化较大,如果不及时对供水量及供水压力进行调节,会使整个供水管网的压力处于波动状态,严重的还会引发管网失压或爆管事故,将对供水质量造成极大不利影响。

在供水系统中,如果用户用水量需要变化时,利用改变阀门开度变化传统的调整方法,会造成供水压力不足或过大情况,容易造成资源浪费和产生安全隐患。

因此在一些用水量变化大、水压控制高,并且流量完全由用户确定的供水系统采用变频调速技术则显得尤为重要。

当前我国供水运行管理仍然比较落后,水资源浪费现象十分严重,不能适应现代社会发展的需求。

因此在供水网络中需要采用供水优化调整方案,引入计算机、变频器、可编程控制器等先进技术,使供水网络在最佳状态下运行,具有重要的现实意义。

只有强化水资源的同意管理,进行合理开发,才能促进国民经济的可持续发展[1]。

1.2变频恒压供水系统的国内外研究现状

变频恒压供水是在变频调速技术的发展之后逐渐发展起来的。

在早期,由于国外生产的变频器的功能主要限定在频率控制、升降速控制、正反转控制、起制动控制、变压变频比控制及各种保护功能。

应用在变频恒压供水系统中,变频器仅作为执行机构,为了满足供水量大小需求不同时,保证管网压力恒定,需在变频器外部提供压力控制器和压力传感器,对压力进行闭环控制。

从查阅的资料的情况来看,国外的恒压供水工程在设计时都采用一台变频器只带一台水泵机组的方式,几乎没有用一台变频器拖动多台水泵机组运行的情况,因而投资成本高。

即1968年,丹麦的丹佛斯公司发明并首家生产变频器(丹佛斯是传动产品全球五大核心供应商之一)后,随着变频技术的发展和变频恒压供水系统的稳定性、可靠性以及自动化程度高等方面的优点以及显著的节能效果被大家发现和认可后,国外许多生产变频器的厂家开始重视并推出具有恒压供水功能的变频器,像瑞典、瑞士的ABB集团推出了HVAC变频技术,法国的施耐德公司就推出了恒压供水基板,备有“变频泵固定方式”,“变频泵循坏方式”两种模式。

它将PID调节器和PLC可编程控制器等硬件集成在变频器控制基板上,通过设置指令代码实现PLC和PID等电控系统的功能,只要搭载配套的恒压供水单元,便可直接控制多个内置的电磁接触器工作,可构成最多七台电机(泵)的供水系统。

这类设备虽然说是微化了电路结构,降低了设备成本,但其输出接口的扩展功能缺乏灵活性,系统的动态性能和稳定性不高,与别的监控系统(如BA系统)和组态软件难以实现数据通信,并且限制了带负载的容量,因此在实际使用时其范围将会受到限制[14]。

目前国内有不少公司在做变频恒压供水的工程,大多采用国外品牌的变频器控制水泵的转速,水管的管网压力的闭环调节及多台水泵的循环控制,有的采用可编程控制器(PLC)及相应的软件予以实现;有的采用单片机及相应的软件予以实现。

但在系统的动态性能、稳定性能、抗干扰性能以及开放性等多方面的综合技术指标来说,还远远没能达到所有用户的要求。

原深圳华为(现己更名为艾默生)电气公司和成都希望集团〔森兰牌变频器)也推出了恒压供水专用变频器(2.2kw-30kw),无需外接PLC和PID调节器,可完成最多四台水泵的循坏切换、定时起动、停止和定时循环(月麦丹佛斯公司的VLT系列变频器可实现七台水泵机组的切换)。

该变频器将压力闭环调节与循环逻辑控制功能集成在变频器内部实现,但其输出接口限制了带负载容量,同时操作不方便且不具有数据通信功能,因此只适用于小容量,控制要求不高的供水场所。

可以看出,目前在国内外变频调速恒压供水控制系统的研究设计中,对于能适应不同的用水场合,结合现代控制技术、网络和通讯技术同时兼顾系统的电磁兼容性(EMC)的变频但压供水系统的水压闭环控制的研究还是不够的。

因此,有待于进一步研究改善变频恒压供水系统的性能,使其能被更好的应用于生活、生产实践中。

采用变频调节以后,系统实现了软起动,电机起动电流从零逐渐增至额定电流,起动时间相应延长,对电网没有较大的冲击,减轻了起动机械转矩对于电机的机械损伤,有效的延长了电机的使用寿命。

这种调控方式以稳定水压为目的,各种优化方案都是以母管(市政来水管)进口压力保持恒定为条件。

实际上,给水泵站的出口压力允许在一定范围内变化。

因此这种调控方式缩小了优化范围,所得到的解为局部最优解,不能完全保证泵始终工作在最优状态.变频调速是优于以往任何一种调速方式(如调压调速、变极调速、串级调速等),是当今国际上一项效益最高、性能最好、应用最广、最有发展前途的电机调速技术.它采用微机控制技术;电力电子技术和电机传动技术实现了工业交流电动机的无级调速,具有高效率、宽范围和高精度等特点。

以变频器为核心结合PLC组成的控制系统具有高可靠性、强抗干扰能力、组合灵活、编程简单、维修方便和低成本低能耗等诸多特点[2]。

1.3PLC的定义及发展

1.3.1可编程控制器的定义

可编程控制器(ProgrammableLogicController)简称PLC,主要用于顺序控制,随着计算机控制技术的发展,PLC的功能不断扩展和完善,其功能远远超出了逻辑控制和顺序控制的范围,具备了模拟量的控制、过程控制以及远程通信等强大的功能。

国际电工委员会(InternationalElectricalCommittee)于1987年颁布的PLC标准草案中对PLC做了如下定义:

“PLC是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。

它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出控制各种类型的机械或生产过程。

PLC及其有关的外围设备都应该按易于与工业控制系统形成一个整体,易于扩展其功能的原则而设计。

”事实上PLC就是以嵌入式CPU为核心,配以I/O为模块,可以方便的用于工业控制领域的装置。

因此,PLC实际上就是:

“工业专业计算机”。

1.3.2可编程序控制器的发展历程

可编程序控制器问世于20世纪60年代,当时的可编程序控制器功能都很简单,只有逻辑、定时、计数等功能;硬件方面用于可编程序控制器的集成电路还没有投入大规模工业化生产,CPU以分立元件组成;存储器为磁心存储器,存储容量有限;用户指令一般只有二三十条,还没有成型的编程语言;机型单一,没有形成系列。

一台可编程序控制器最多只能替代200--300个继电器组成的控制系统,在体积方面,与现在的可编程序控制器相比,可以说是庞然大物。

进入70年代,随着中小规模集成电路的工业化生产,可编程序控制器技术得到了较大的发展。

可编程序控制器功能除逻辑运算外,增加了数值运算、计算机接口、模拟量控制等;软件开发有自诊断程序,程序存储开始使用EPROM;可靠性进一步提高,初步形成系列,结构上开始有模块式和整体式的区分,整机功能从专用向通用过渡。

70年代后期和80年代初期,微处理器技术日趋成熟,单片微处理器、半导体存储器进入工业化生产,大规模集成电路开始普遍应用。

可编程序控制器开始向多处理器发展,使可编程序控制器的功能和处理速度大为增强,并具有通信和远程I/O能力,增加了多种特殊功能,如浮点运算、三角函数、查表、列表等,自诊断和容错技术也迅速发展。

80年代后期到90年代中期,随着计算机和网络技术的普及应用,超大规模集成电路、门阵列以及专用集成电路的迅速发展,可编程序控制器的CPU已发展为由16位或32位微处理器构成,处理速度得到很大提高,高速计数、中断、PID、运动控制等功能引入了可编程序控制器。

使得可编程序控制器能够满足工业生产过程的各个领域,可编程序控制器已完全取代了传统的逻辑控制装置,模拟量仪表控制装置和以小型机为核心的DDC(直接数字控制)控制装置。

由于联网能力增强,既可和上位计算机联网,也可以下挂FLEXI/O或远程I/O,从而组成分布式控制系统(DCS)已无困难。

梯型图语言和语句表语言完全成熟,基本上标准化,SFC(顺序功能图)语言逐步普及,专用的编程器已被个人计算机和相应编程软件所替代,人机界面装置日趋完善,已能进行对整个工厂的监控、管理,并发展了冗余技术,大大加强了可靠性。

进入21世纪,可编程序控制器仍保持旺盛的发展势头,并不断扩大其应用领域,如为用户配置柔性制造系统(FMS)和计算机集成制造系统(CIMS)。

目前可编程序控制器主要向两个方向扩展:

一是综合化控制系统,它已经突破了原有的可编程序控制器的概念,将工厂生产过程控制与信息管理系统密切结合起来,甚至向上为MES和ERP系统准备了技术基础,这种发展趋势会使得举步为艰的ERP系统有了坚实的技术基础,从而会带来工业控制的一场变革,实现真正意义上的电子信息化工厂;二是微型可编程序控制器异军突起,体积如手掌大小,功能可覆盖单体设备及整个车间的控制功能,并具备联网功能,这种微型化的可编程序控制器使得控制系统可将触角延伸到工厂的各个角落。

随着世界经济一体化进程的加快,在技术发展的同时,发达国家更加注重了对可编程序控制器的知识产权的保护,国际大型可编程序控制器制造商纷纷加入了可编程序控制器的国际标准化组织,他们利用许多技术标准建立了符合他们经济利益的技术保护壁垒[3]。

1.3.3可编程序控制器在我国的发展

我国可编程序控制器的发展与国际上的发展有所不同,国际上可编程序控制器的发展是从研制、开发、生产到应用,而我国则是从成套设备引进、可编程序控制器引进应用、消化移植、合资生产到广泛应用。

大致可划分为下述三个阶段:

可编程序控制器的初级认识阶段(70年代后期到80年代初期),国际上可编程序控制器的发展,首先引起了国内工程技术界的极大兴趣,所以我国对可编程序控制器的认识始于70年代后期到80年代初期的成套设备引进中,当时的上海宝钢一期工程中有多项工程引进了十几种机型约200多台可编程序控制器。

这些可编程序控制器用于原料码头到高炉、轧钢、钢管等整个钢铁冶炼以及加工生产线上,取代了传统的继电器逻辑系统,并部分取代了模拟量控制和小型DDC系统。

继宝钢一期工程后,国内许多厂家陆续引进的设备和生产线大都配备了可编程序控制器,其应用范围包括电站、石油化工、汽车制造、港口和码头等各领域。

正是在成套设备引进过程中,我们打开了眼界,了解认识了可编程序控制器,这也促进了可编程序控制器在我国的发展。

1.3.4西门子S7-200PLC简介

西门子公司具有品种非常丰富的PLC产品。

S7系列是传统意义的PLC,S7-200属于小型PLC,在1998年升级为第二代产品,2004年升级为第三代产品,其特点如下:

(1)功能强大。

S7-200有5种CPU模块,最多可扩展7个扩展模块,扩展到248点数字量I/O或38路模拟量I/O,最多有30多KB的程序存储空间和数据存储空间。

(2)先进的程序结构,功能强大、使用方便的编程软件。

(3)灵活方便的寻址方法。

(4)强大的通信功能和品种丰富的配套人机界面。

(5)有竞争力的价格。

(6)完善的网上技术支持等。

(7)编程方便易学。

第一编程语言(梯形图)是一种图形编程语言,与多年来工业现场使用的电器控制图非常相似,理解方式也相同,非常适合现场人员学习。

(8)使用于恶劣的工作环境。

采用封装的方式,适合于各种震动、腐蚀、有毒气体等的应用场合。

(9)与外部设备连接方便。

采用统一接线方式的可坼装的活动端子排,提供不同的端子功能适合于多种电器规格。

(10)体积小、重量轻、功耗底。

(11)维修方便,功能更灵活。

程序的修改就以意味着功能的修改,因此功能的改变非常灵活[4]。

1.4本文主要内容

本设计是以小区供水系统为控制对象,采用PLC和变频技术相结合技术,设计一套城市小区恒压供水系统,并引用计算机对供水系统进行远程监控和管理保证整个系统运行可靠,安全节能,获得最佳的运行工况。

PLC控制变频恒压供水系统主要有变频器、PLC、压力变送器和现场的水泵机组一起组成一个完整的闭环调节系统,本设计中有3台水泵,采用部分流量调节方法,即3台水泵中只有1台水泵在变频器控制下作变速运行,其余水泵做恒速运行。

PLC根据管网压力自动控制各个水泵之间切换,并根据压力检测值和给定值之间偏差进行PID运算,输出给变频器控制其输出频率,调节流量,使供水管网压力恒定。

各水泵切换遵循先起先停、先停先起原则。

根据以上控制要求,进行系统总体控制方案设计。

硬件设备选型、PLC选型,估算所需I/O点数,进行I/O模块选型,绘制系统硬件连接图:

包括系统硬件配置图、I/O连接图,分配I/O点数,列出I/O分配表,熟练使用相关软件,设计梯形图控制程序,对程序进行调试和修改并设计监控系统。

 

2系统的控制方案确定

2.1变频恒压供水系统控制方案的确定

恒压变频供水系统主要有压力变送器、变频器、恒压控制单元、水泵机组以及低压电器组成。

系统主要的任务是利用恒压控制单元使变频器控制一台水泵或循环控制多台水泵,实现管网水压的恒定和水泵电机的软起动以及变频水泵与工频水泵的切换,同时还要能对运行数据进行传输和监控。

根据系统的设计任务要求,有以下几种方案可供选择:

(1)有供水基板的变频器+水泵机组+压力传感器..

这种控制系统结构简单,它将PID调节器和PLC可编程控制器等硬件集成在变频器供水基板上,通过设置指令代码实现PLC和PID等电控系统的功能。

它虽然微化了电路结构,降低了设备成本,但在压力设定和压力反馈值的显示方面比较麻烦,无法自动实现不同时段的不同恒压要求,在调试时,PID调节参数寻优困难,调节范围小,系统的稳态、动态性能不易保证。

其输出接口的扩展功能缺乏灵活性,数据通信困难,并且限制了带负载的容量,因此仅适用于要求不高的小容量场合。

(2)通用变频器+单片机(包括变频控制、调节器控制)+人机界面+压力传感器.这种方式控制精度高、控制算法灵活、参数调整方便,具有较高的性价比,但开发周期长,程序一旦固化,修改较为麻烦,因此现场调试的灵活性差,同时变频器在运行时,将产生干扰,变频器的功率越大,产生的干扰越大,所以必须采取相应的抗干扰措施来保证系统的可靠性。

该系统适用于某一特定领域的小容量的变频恒压供水中。

(3)通用变频器+PLC(包括变频控制调节器控制)+人机界面+压力传感器.这种控制方式灵活方便。

具有良好的通信接口,可以方便地与其他的系统进行数据交换,通用性强;由于PLC产品的系列化和模块化,用户可灵活组成各种规模和要求不同控制系统。

在硬件设计上,只需确定PLC的硬件配置和I/O的外部接线,当控制要求发生改变时,可以方便地通过PC机来改变存贮器中的控制程序,所以现场调试方便。

同时由于PLC的抗干扰能力强、可靠性高,因此系统的可靠性大大提高。

该系统能适用于各类不同要求的恒压供水场合,并且与供水机组的容量大小无关。

通过对以上这几种方案的比较和分析,可以看出第三种控制方案更适合于本系统。

这种控制方案既有扩展功能灵活方便、便于数据传输的优点,又能达到系统稳定性及控制精度的要求[4]。

2.2变频恒压供水系统的结构

通过变频恒压供水系统我们可以看出变频调速恒压供水系统由执行机构、信号检测、控制系统、人机界面、通讯接口以及报警装置等部分组成[5]。

图2.1变频恒压供水构成图

2.2.1执行机构

执行机构是由一组水泵组成,它们用于将水供入用户管网.通常这些水泵包括:

(1)调速泵:

是由变频调速器控制、可以进行变频调整的水泵,用以根据用水量的变化改变电机的转速,以维持管网的水压恒定。

(2)恒速泵:

水泵运行只在工频状态,速度恒定,它们用以在用水量增大而调速泵的最大供水能力不足时,对供水量进行定量的补充.

此外,通常一些变频系统还会增设附属小泵,它只运行于启、停两种工作状态,用以在用水量很小的情况下(例如:

夜间)对管网用水量进行少量的补充.

2.2.2信号检测

在系统控制过程中,需要检测的信号包括水压信号、液位信号和报警信号:

(l)水压信号:

它反映的是用户管网的水压值,它是恒压供水控制的主要反馈信号。

此信号是模拟信号,读入PLC时,需进行转换。

另外为加强系统的可靠性,还需对供水的上限压力和下限压力用压力表进行检测。

检测结果可以送给PLC,作为数字量输入。

(2)液位信号:

它反映水泵的进水水源是否充足。

信号有效时,控制系统要对系统实施保护控制,以防止水泵空抽而损坏电机和水泵。

此信号来自在安装于水源处的液位传感器。

(3)报警信号:

它反映系统是否正常运行,水泵电机是否过载、变频器是否有异常,该信号为开关量信号。

2.2.3控制系统

供水控制系统一般安装在供水控制柜中,包括供水控制器、变频器和电控设备三个部分:

(1)供水控制器:

它是整个变频恒压供水控制系统的核心。

供水控制器直接对系统中的压力、液位、报警信号进行采集,对来自人机接口和通讯接口的数据信息进行分析、实施控制算法,得出对执行机构的控制方案,通过变频调速器和接触器对执行机构(即水泵成行控制.

(2)变频器:

它是对水泵进行转速控制的单元.变频器跟踪供

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 经济市场

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1