A.完全进入磁场中时线圈的速度大于(vO+v)/2
B.安全进入磁场中时线圈的速度等于(vO+v)/2
C.完全进入磁场中时线圈的速度小于(vO+v)/2
D.以上情况A、B均有可能,而C-牡不匸雀的
解析:
设线圈完全进入磁场中时的速度为vx。
线圈在穿过磁场的过程中所受合外力为安培力。
对于线圈进入磁场
-=-Ba——--ua=-
的过程,据动量定理可得:
-Fl^=-Ba=■
对于线圈穿出磁场的过程,据动量定理可得:
S
Ba2
-Ba=wv-梆儿
R#
由上述二式可得’【,即B选项正确。
[例10]光滑U型金属框架宽为L,足够长,其上放一质量为m的金属棒ab,左端连接有一电容为C的电容器,
现给棒一个初速v0,使棒始终垂直框架并沿框架运动,如图所示。
求导体棒的最终速度。
解析:
当金属棒ab做切割磁力线运动时,要产生感应电动势,这样,电容器C将被充电,ab棒中有充电电流存
在,ab棒受到安培力的作用而减速,当ab棒以稳定速度v匀速运动时,有:
BLv=UC=q/C
而对导体棒ab利用动量定理可得:
—BLq=mv—mvO
V=
由上述二式可求得:
用+沪必
问题5:
电磁感应中电流方向问题
JJ
[例11](06广东物理卷)如图所示,用一根长为L质量不计的细杆与一个上弧长为'■',下弧长为"-的金属线框
的中点联结并悬挂于O点,悬点正下方存在一个上弧长为、下弧长为的方向垂直纸面向里的匀强磁场,
且先将线框拉开到如图所示位置,松手后让线框进入磁场,忽略空气阻力和摩擦。
下列说法正确的是()
A.金属线框进入磁场时感应电流的方向为:
cta
B.金属线框离开磁场时感应电流的方向为:
aTdtctbTa
C.金属线框de边进入磁场与ab边离开磁场的速度大小总是相等
D.金属线框最终将在磁场内做简谐运动
分析:
金属线框进入磁场时,由于电磁感应,产生电流,根据楞次定律判断电流的方向为:
cta。
金属
线框离开磁场时由于电磁感应,产生电流,根据楞次定律判断电流的方向为aTbtctdta。
根据能量转化和守
恒,可知,金属线框de边进入磁场与ab边离开磁场的速度大小不相等。
如此往复摆动,最终金属线框在匀强磁
场内摆动,由于<<•」,单摆做简谐运动的条件是摆角小于等于10度,故最终在磁场内做简谐运动。
答案为D。
小结:
本题考查了感应电动势的产生条件,感应电流方向的判定,物体做简谐运动的条件,这些是高中学生必须掌握的基础知识。
感应电动势产生的条件只要穿过回路的磁通量发生变化,回路中就产生感应电动势,若电路闭合则有感应电流产生。
因此弄清引起磁通量的变化因素是关键,感应电流的方向判定可用楞次定律与右手定则,在应用楞次定律时要把握好步骤:
先明确回路中原磁场的方向及磁通量的变化情况,再依楞次定律确定感应电流的磁场方向,然后根据安培定则确定感应电流的方向。
线圈在运动过程中的能量分析及线框最终的运动状态的确定为此题增大了难度。
练习:
[06四川卷]如图所示,接有灯泡L的平行金属导轨水平放置在匀强磁场中,一导体杆与两导轨良好接触并做往复运动,其运动情况与弹簧振子做简谐运动的情况相同。
图中O位置对应于弹簧振子的平衡位置,P、Q
两位置对应于弹簧振子的最大位移处。
若两导轨的电阻不计,则()
A.杆由O到P的过程中,电路中电流变大
B.杆由P到Q的过程中,电路中电流一直变大
C.杆通过O处时,电路中电流方向将发生改变
D.杆通过O处时,电路中电流最大
解答:
D问题6:
电磁感应中的多级感应问题
[例12]如图所示,ab、ed金属棒均处于匀强磁场中,ed原静止,当ab向右运动时,ed如何运动(导体电阻不
计)()
A.若ab向右匀速运动,ed静止;
B.若ab向右匀加速运动,ed向右运动;
C.若ab向右匀减速运动,ed向左运动
a
■
■
・・C
2
1
1
3
X
分析:
这是多级电磁感应问题,ab相当于一个电源,右线圈相当于负载;左线圈相当于电源,ed相当于负载。
ab
运动为因,切割磁感线产生感应电流为果,电流流过右线圈为因,右线圈中形成磁场为果,右线圈磁场的磁感线
通过左线圈,磁场变化时为因,左线圈中产生感应电流为果,感应电流流过ed为因,ed在左磁场中受安培力作
用而运动为果。
故A、B、C均正确。
小结:
分析电磁感应现象中的多级感应问题,要正确处理好因果关系,步步为营,紧扣闭合回路及回路中的磁通
二相接,如图所示。
导轨上放一根导线ab.
量的变化这一关键,对于线圈问题还应注意线圈的绕向。
练习:
在匀强磁场中放一电阻不计的平行金属导轨,导轨跟大线圈
磁力线垂直于导轨所在平面。
欲使丄所包围的小闭合线圈T产生顺时针方向的感应电流,则导线的运动可能是
分析:
此题可用逆向思维的方法分析。
欲使
面向里,由楞次定律可知,有两种情况:
一是
N产生顺时针方向的感应电流,感应电流在J-'中的磁场方向垂直纸
二中有顺时针方向的逐渐减小的电流,其在丄.中的磁场方向亦向
里,且磁通量在减小;二是中有逆时针方向的逐渐增大的电流,其在「中的磁场方向为向外,且磁通量在增
大,对于前者,应使ab减速向右运动;对于后者,应使ab加速向左运动,故CD正确。
问题7:
电磁感应中的动力学问题
[例13](2005年上海)如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1m,导轨平面
与水平面成0=370角,下端连接阻值为R的电阻。
匀强磁场的方向与导轨平面垂直。
质量为0.2kg、电阻不计的
导体棒放在两导轨上,棒与导轨垂直并且接触良好,它们间的动摩擦因数为0.25。
(1)金属棒沿导轨由静止开始下滑时的加速度大小。
(2)当金属棒下滑速度达到稳定时,电阻R消耗的功率为8W,求该速度的大小。
(3)在上问中,若R=2Q,金属棒中电流方向由a到b,求磁感应强度的大小与方向。
(g=10m/s2,sin370=0.6,
cos370=0.8)
(1)金属棒开始下滑时初速度为零,根据牛顿第二定律有:
^二<:
■■一「*
则:
二二1「「二二疋「11
代入数据得:
:
川.''-:
:
二:
一:
(2)设金属棒达到稳定时,速度为V,所受安培力为F,棒在沿导轨方向受力平衡,
,p囘j£]0jfg
Fmgsin&-/MgcosS0.2x10x(0.6-0.25x0.8)
vBL
(3)设电路中电流强度为I,两导轨间金属棒的长度为L,磁场的感应强度为B,则1=二,P=I2R,由以上两
^-=-~7=047
式得B=.1..一
磁场的方向垂直导轨平面向上。
小结:
此题为电磁感应知识与力学、电路知识的综合问题,此类题目常以导轨运动为背景,解决此类题的关键是对金属导体作出正确的受力分析,并通过运动状态的动态分析来寻找过程的临界状态,得出速度、加速度的极值条件,找到解题的突破口,然后综合运用力学及电学规律分析和解决实际问题。
练习:
(06重庆卷)两根相距为L的足够长的金属直角导轨如题下图所示放置,它们各有一边在同一水平面内,另一边垂直于水平面。
质量均为m的金属细杆ab、cd与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因
数为卩,导轨电阻不计,回路总电阻为2R。
整个装置处于磁感应强度大小为B,方向竖直向上的匀强磁场中。
当
ab杆在平行于水平导轨的拉力F作用下以速度V1沿导轨匀速运动时,cd杆也正好以速率向下V2匀速运动。
重
力加速度为g。
以下说法正确的是()
A.ab杆所受拉力F的大小为卩m由一二B.cd杆所受摩擦力为零
B附+眄)
C.回路中的电流强度为一.D.与V1大小的关系为尸
2Rmg
答案:
AD
问题&电磁感应中的电路问题
[例14]如图所示,在磁感强度为-的匀强磁场中有一半径为二的
金属圆环。
已知构成圆环的电线电阻为
环上滑动的金属棒一」电阻为电阻O如果一」棒
以某一角速度匀速转动时,电阻X的电功率最小值为「,那么
'".I,以0为轴可以在圆
■
1詁
T
"2
一」棒匀速转动的角速度应该多大?
(其它电阻不计)
分析:
一」棒的感应电动势e=BL2w/2,等效电路如图所示,当二棒」端处于圆环最上端时,即王」咒时,
圆环的等效电阻最大,其值'丄知一上'!
II坨&
4-rH」一11
|干路中的最小电流1'七
电阻R1的最小功率PO=12/
小结:
电磁感应现象常与恒定电路相结合构建综合题,分析此类问题时一般遵循“三步曲”即:
用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向,找准等效电源;正确画好等效电路,区分内、外电路,路端电压与电动势;灵活运用闭合电路欧姆定律,串、并联电路的性质及电功、电功率、电热等计算公式求解相关物理量。
电磁感应中的双动式导轨问题
一、等间距水平导轨,无水平外力作用(安培力除外,下同)
•。
导轨上面横放着两根导体
例1两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为
棒匚」和],构成矩形回路,如图所示。
两根导体棒的质量皆为T:
',电阻皆为二,回路中其余部分的电阻可
i.k.棒受到
.<棒的速度大
解析丄一棒向一'丿棒运动时,两棒和导轨构成的回路面积变小,磁通量变小,于是产生感应电流。
与其运动方向相反的安培力而做减速运动,棒则在安培力的作用下向右做加速运动。
只要
于二棒的速度,回路总有感应电流,"棒继续减速,「丿棒继续加速,直到两棒速度相同后,回路面积保
持不变,不产生感应电流,两棒以相同的速度r做匀速运动。
(1)从开始到两棒达到相同速度"-的过程中,两棒的总动量守恒,有二I,根据能量守恒定律,整
Q二_豹也2附於二_衢%2
个过程中产生的焦耳热■11-
ran
(2)设工棒的速度变为—时,一'丿棒的速度为则由动量守恒可知
此时rd棒所受的安培力4R。
F肝®
I1
由牛顿第二定律可得:
「丿棒的加速度」-:
:
二.。
二、不等间距水平导轨,无水平外力作用
例2如图所示,光滑导轨吐_、匚二等高平行放置,__间宽度为贞丁1间宽度的3倍,导轨右侧水平且处于
竖直向上的匀强磁场中,左侧呈弧形升高。
一;」是质量均为「的金属棒,现让一;」从离水平轨道•:
高处
由静止下滑,设导轨足够长。
试求:
(1)豆、"棒的最终速度;
(2)全过程中感应电流产生的焦耳热。
解析」「下滑进入磁场后切割磁感线,在一二二电路中产生感应电流,一L、二'各受不同的磁场力作用而分
别作变减速、变加速运动,电路中感应电流逐渐减小,当感应电流为零时,也、「」不再受磁场力作用,各
自以不同的速度匀速滑动。
mgh=-牌J
⑴此自由下滑,机械能守恒:
2①
由于一L、J丄串联在冋一电路中,任何时刻通过的电流总相等,金属棒有效长度,故它们的磁场
力为:
33氐
②
在磁场力作用下,丿一-、「丿各作变速运动,产生的感应电动势方向相反,当匸:
丄时,电路中感应电流
为零d,安培力为零,ob、Ed运动趋于稳定,此时有:
肌%=BL池
II
所以%二伙③
一宀、「丿受安培力作用,动量均发生变化,由动量定理得:
⑵根据系统的总能量守恒可得:
Q二帕-+強%$-十叫
三、等间距水平导轨,受水平外力作用
例3两根干仃的金属导轨,固疋在冋水干面上,磁感强度5=0.507的匀强磁场与导轨所在平面垂直,
轨的电阻很小,可忽略不计。
导轨间的距离丄一1X1,两根质量均为-•-「二的平行金属杆甲、乙可在
导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为'-。
在;11时刻,两杆都处于静止状态。
现有一与导轨平行,大小为0.20N的恒力J作用于金属杆甲上,使金属杆在导轨上滑动。
经过仁5.0$,金属杆甲的加速度为a=1.37^/?
,求此时两金属杆的速度各为多少?
乙甲
fF
解析设任一时刻一两金属杆甲、乙之间的距离为」,速度分别为‘1和:
,经过很短时间_!
:
杆甲移动距离
A',杆乙移动距离,回路面积改变
A5二[(x_旳血了-li=(vj-v2
由法拉第电磁感应定律,回路中的感应电动势:
回路中的电流:
Z12R
杆甲的运动方程:
F-Bk^ma
由于作用于杆甲和杆乙的安培力总是大小相等、方向相反,所以两杆的动量变化(11时为0)等于外力F
的冲量:
世二叶吧
联立以上各式解得
叫二"2[冈伽+2R(F-ma)/B2l2\
v3=1/2R(F-ma)!
B2l2
代入数据得VL=8.15m/sV2=l.85m/s
四、竖直导轨问题
例4如图所示,竖直放置的两光滑平行金属导轨,置于垂直于导轨平面向里的匀强磁场中,两根质量相同
的导体棒必和01与导轨紧密接触且可自由滑动。
先固定A,释放5,当B的速度达到10然/£时,再释放。
经过1s后,」的速度达到「,则(i)此时:
的速度大小是多少?
(2)若导轨很长,卜订、:
棒最后的
运动状态。
J
1
n
r
0
T71
r
解析
(1)当丨棒先向下运动时,在JL和:
以及导轨所组成的闭合回路中产生感应电流,于是丄棒受到向下的安培力,【棒受到向上的安培力,且二者大小相等。
释放囲棒后,经过时间t,分别以鬥和〕为研究对象,根据动量定理,则有:
(^g+片》二剛%
(mg-py=-拠%
代入数据可解得:
怀=1帥"|
(2)在7、&棒向下运动的过程中,心棒产生的加速度込二g*F加,匕棒产生的加速度如二g—F切当“棒的速度与:
棒接近时,闭合回路中的-〉逐渐减小,感应电流也逐渐减小,则安培力也逐渐减小。
最
后,两棒以共同的速度向下做加速度为g的匀加速运动。
以上几种常见的情况归纳如下:
类水平导轨,无水平外力
终两导体棒以相同的速度态做匀速运动
分
析
不等间距导轨,无水平外力
两导体棒以不同的速度做匀速运动
解
题
尺S策
水平导轨,受水平外力
两导体棒以不同的速度做加速度相同的匀加速运动
竖直导轨
两导体棒以相同的速度做加速度相同的匀加速运动
动量守恒定律,能量守恒定律及电磁学、运动学知识
动量定理,能量守恒定律及电磁学、运动学知识
动量定理,能量守恒定律及电磁学、运动学知识
动量定理,能量守恒定律及电磁学、运动学知识
电磁感应中“滑轨”问题归类例析
冯德强(南菁高级中学214400江苏)
导体杆在磁场中运动切割磁感线产生电磁感应现象,是历年高考的一个热点问题。
因此在高三复习阶段有
必要对此类问题进行归类总结,使学生更好的掌握、理解它的内涵。
笔者作了一个粗浅的归类,请读者批评指正。
通过研究各种题目,我认为电磁感应中“滑轨”问题,最后要探讨的问题不外乎以下几种:
1、运动分析:
稳定运动的性质(可能为静止、匀速运动、匀加速运动)、求出稳定的速度或加速度、求达到稳定的过程中发生的位移或相对位移等
2、分析运动过程中产生的感应电流、讨论某两点间的电势差等
3、分析有关能量转化的问题:
如产生的电热、机械功率等
4、求通过回路的电量
解