通电后,氨基酸就会移动,直到某处的PH=PI,氨基酸才呈电中性,不再移动,因此,可以测出PI。
<4>氨基酸的重要化学反应
反应基团试剂主要产物应用P
α-NH2茚三酮紫色、红色物对氨基酸显色63
α=NH2茚三酮黄色物Pro的鉴定
α-NH2HNO2N2等游离aa定量,蛋白质水解程度59
α-NH2DNFB二硝基氟苯Sanger试剂DNP-aa二硝基苯黄色物蛋白质N端测定一级结构分析标准图谱6181
α-NH2PITC苯异硫氰酸酯Edman试剂PTC-aa在无水的酸中环化成PTH-aa蛋白质N端测定一级结构分析aa顺序自动分析仪标准图谱82
α-NH2甲醛羟甲基-aa和二羟甲基-aa甲醛滴定aa含量(封闭氨基)60
Arg的胍基α-萘酚次溴酸钠坂口试剂桃红色物鉴定Arg
Met的-S-CH3H2O2过氧化物吸烟有害,烟中的过氧化物,弹性蛋白酶,抑制剂Met,肺气肿。
Cys的-SH碘代乙酸ICH2COOH过甲酸HCOOOH乙酸硫基HOOC-CH2-S-磺基HS3O-肽链拆分,作用与CYSS上的二硫键65
His的咪唑基重氮苯磺酸Pauly试剂樱红色物(1His连2重)鉴定His65-66
Tyr的酚基重氮苯磺酸Pauly试剂桔黄色物鉴定Tyr
Tyr的酚基磷钼酸、磷钨酸Folin试剂兰色物质定量测定蛋白质、Tyr
Trp的吲哚基对二甲基氨基苯甲醛兰色物质鉴定Trp
-OHSer、Thr、Tyr激酶、ATPP-aa调节酶的活性,测定酶的活性中心65
§2.肽
一.肽与肽键
氨基酸的羧基与另一氨基酸氨基脱水缩合形成的化合物就是肽,其实就是一种酰胺化合物,其酰胺键就是肽键,它的特点是刚性平面、反式构型。
见补页。
肽中的氨基酸叫氨基酸残基,几个氨基酸残基就叫几肽。
二.肽的种类
寡肽:
2-10,无构象,谷胱甘肽是3肽
多肽:
10-50,介于之间,胰高血糖素是29肽
蛋白质:
50以上,有特定的构象,胰岛素是51肽
三.肽的表示法
1.N端、C端的概念:
肽链的两个端点,N端的氨基酸残基的α-氨基未参与肽键的形成,C端的氨基酸残基的α-羧基未参与肽键的形成。
2.写法和读法:
规定书写方法为N端→C端,例如:
Ala-Gly-Phe,读作:
丙氨酰甘氨酰苯丙氨酸。
注意有时会看到一些奇怪的写法,比如:
NH2-Ala-Gly-Phe-COOH,或H-Ala-Gly-Phe-OH,均属于画蛇添足,但Ala-Gly-Phe-NH2则表示C端被酰胺化了。
若有必要从C端→N端写,则必须标明,如(C)Phe-Gly–Ala(N)
四.肽的性质
1.酸碱性:
肽至少有一个游离的氨基和游离的羧基,也是两性化合物,至少有2级解离,通常都有多级解离。
因此,肽在水溶液中也能够带电,也有自己的等电点PI,其计算与测定完全同氨基酸的。
例如:
谷胱甘肽,Glu-Cys-Gly,其结构见P72,注意Glu-Cys之间的肽键(γ-,而不是正常的α-),各解离基团的PK’值见P72,PI=(2.13+2.34)/2=2.235,很酸。
2.双缩脲反应:
见笔记P33,双缩脲(相似于三肽,即2个肽键)、碱性铜离子、紫红色化合物。
凡大于三肽的肽都能发生此反应,2肽不行。
3.水解反应:
肽可以被酸、碱、酶所水解,其优劣性如下:
<1>酸水解:
浓酸(6N以上,解释一下N=M/价),高温(110℃以上),长时(24-36小时),污染,Trp遭到破坏,不消旋,水解彻底
<2>碱水解:
浓碱(6N以上),高温(100℃以上),6小时,污染,含-OH和-SH的氨基酸均遭到破坏,Ser、Thr、Tyr、Cys,消旋,水解彻底。
<3>酶水解:
胰酶,常温常压,常PH,不消旋、不破坏、不彻底。
常用的蛋白酶,即工具酶:
外切酶:
氨肽酶:
从N端开始一个个水解肽键
羧肽酶:
从C端开始一个个水解肽键:
羧肽酶A:
Arg、Lys、Pro除外的氨基酸残基
羧肽酶B:
仅Arg、Lys
羧肽酶C:
所有的氨基酸残基
内切酶:
胰蛋白酶:
仅作用于Arg、Lys的羧基与别的氨基酸的氨基之间形成的肽键。
产物为C端Arg、Lys的肽链。
糜蛋白酶:
仅作用于含苯环的氨基酸的羧基与别的氨基酸的氨基之间形成的肽键。
Trp、Tyr、Phe,产物为C端Trp、Tyr、Phe的肽链。
五.肽的实例
1.谷胱甘肽:
其结构见P72,注意Glu与Cys的连接(γ-,而不是正常的α-),还原型GSH和氧化型GSSG,多种酶的激活剂,参与体内多项代谢,主要作用是还原剂,消除体内的自由基(过氧化物,抽烟,黑坳)。
2.催产素和加压素:
9肽或环8肽,都是脑垂体后叶激素,结构见《生化制药工艺》P?
都有升血压、抗利尿、刺激子宫收缩、排乳的作用,催产素促进遗忘,加压素增强记忆。
3.短杆菌肽和缬氨霉素
4.促甲状腺素释放因子:
TRF,是个三肽,TRF→促甲状腺素→甲状腺素
5.胰高血糖素:
29肽,存在,见《生化制药工艺》P?
,升高血糖,作用同肾上腺素。
§3.蛋白质
一.种类和性质
1.种类
<1>组成上分:
简单蛋白:
仅由aa构成
结合蛋白:
简单蛋白与其它生物分子的结合物,糖蛋白(共价)、脂蛋白(非共价)
<2>形态上分:
球蛋白:
长/宽≤3~4,血红蛋白
纤维蛋白:
长/宽>10,血纤蛋白、丝蛋白
<3>功能上分:
酶、抗体、运输蛋白、激素等
<4>理化性质上分:
HDL、VHDL、LDL、VLDL
<5>构象上分:
国际上有蛋白质构象库。
2.性质
<1>紫外吸收:
280nm,贡献者是Trp、Tyr、Phe,最主要的是Trp,核酸的紫外吸收峰在260nm。
<2>两性解离:
有PI,不能计算,只能测定(等电聚焦)。
等电点沉淀法:
PI处蛋白质的溶解度最低。
<3>胶体性质:
大分子,多于51个aa残基,最小平均分子量为5000D;在水中能两性解离故而带电,又亲水,所以是胶体,分散好。
有电泳、布朗运动、丁达尔现象、不能通过半透膜等等典型的胶体性质。
<4>沉淀反应:
凡是能破坏水化膜以及能中和电荷的物质均可使蛋白质沉淀
等电点沉淀:
PH值,中和电荷
盐析:
高浓度的盐溶液使蛋白质沉淀,离子中和电荷,如(NH4)2SO4
盐溶:
低浓度的盐溶液使蛋白质溶解,蛋清的溶解。
有机溶剂沉淀:
降低溶液的介电常数。
<5>蛋白质变性:
蛋白质在某些外界因素的影响下,理化性质改变、生物活性丧失的现象。
这些因素包括热、酸、碱、有机剂等。
蛋白质变性理论:
吴宪,1931年提出。
蛋白质的功能直接由蛋白质的构象来决定,某些外界因素改变了蛋白质的独特构象,因而使生物活性丧失。
但不改变蛋白质的一级结构(即共价结构)。
蛋白质的变性与水解是不同的。
当环境条件恢复时,蛋白质的生物活性有可能也恢复,这就是蛋白质的复性。
这一理论在实践中有很重要的指导意义,能够解释酶为什么有最适的PH和最适的温度。
<6>蛋白质的颜色反应:
可以用来定量定性测定蛋白质
双缩脲反应:
红色,λm=540nm
黄色反应:
与HNO3的反应,生成硝基苯,呈黄色。
皮肤遇到HNO3的情况,白→黄→橙黄。
米伦氏反应:
与HgNO3或HgNO2的反应,呈黄色,原理同上。
与乙醛酸的反应:
红色,Trp的吲哚基的特定反应。
坂口反应:
红色,Arg的胍基的反应。
福林反应:
蓝色,是Tyr的酚基与磷钼酸和磷钨酸的反应。
印三酮反应:
紫红色
Pauly反应:
樱红色,His的咪唑基。
二.蛋白质的一级结构及其测定
1.蛋白质的结构层次:
1、2、超2、结构域、3、4
2.一级结构:
即蛋白质的共价结构或平面结构,核心内容就是aa的排列顺序,它的改变涉及到蛋白质共价键的破坏和重建。
一级结构的全部内容包括:
肽链的个数、aa的顺序、二硫键的位置、非aa成分。
3.蛋白质一级结构的测定
间接法:
通过测定蛋白质之基因的核苷酸顺序,用遗传密码来推断aa的顺序。
这是因为核苷酸的测序比蛋白质的测序工作要更方便、更准确。
直接法:
用酶和特异性试剂直接作用于蛋白质而测定出aa顺序。
<1>第一步:
前期准备
分离纯化蛋白质:
纯度要达到97%以上才能分析准确。
蛋白质分子量的测定:
渗透压法、凝胶电泳法(聚丙烯酰胺、SDS)、凝胶过滤法、超离心法等
aa组成的测定:
氨基酸自动分析仪
肽链拆分:
非共价键的如氢键、离子键、疏水键、范德华力4种,可用尿素或盐酸胍等有机溶液来拆分。
共价键的仅二硫键1种,可用巯基乙醇、碘代乙酸、过甲酸来拆分。
<2>第二步:
肽链的端点测定
N端测定:
Sanger法,DNFB→DNP-肽→水解→乙醚萃取→层析鉴定
Edman法,PITC→PTC-肽→PTH-aa→层析鉴定
C端测定:
肼解法,P83,唯有C端aa与众不同,酰肼化合物与游离aa,再通过Sanger法来鉴定。
Asn、Gln、Cys、Arg将被肼破坏,不能分析。
羧肽酶法:
配合动力学控制。
羧肽酶A:
Arg、Lys、Pro除外的氨基酸残基
羧肽酶B:
仅Arg、Lys
羧肽酶C:
所有的氨基酸残基
<3>每条肽链aa顺序的测定:
aa顺序自动分析仪只能准确测定50aa以下的肽链,而一般的蛋白质都含有100以上的aa残基,所以,事先要将蛋白质打断成多肽甚至寡肽,再上机分析,而且要2套以上,便于以后拼接。
常用的工具酶和特异性试剂有:
胰蛋白酶:
仅作用于Arg、Lys的羧基与别的氨基酸的氨基之间形成的肽键。
糜蛋白酶:
仅作用于含苯环的氨基酸的羧基与别的氨基酸的氨基之间形成的肽键。
Trp、Tyr、Phe
CNBr:
仅作用于Met的羧基与别的氨基酸的氨基之间形成的肽键。
拼接:
将2套多肽的aa顺序对照拼接,举例:
156********6984523→156987351256984523
→156987351256984523
<4>第四步:
二硫键位置的确定:
包括链内和链间二硫键的位置,用对角线电泳来测。
在肽链未拆分的情况下用胃蛋白酶水解之,可以得到被二硫键连着的多肽产物。
先进行第一向电泳,将产物分开。
再用过甲酸、碘代乙酸、巯基乙醇处理,将二硫键打断。
最后进行第二向电泳,条件与第一向电泳完全相同。
选取偏离对角线的样品(多肽或寡肽),它们就是含二硫键的片段,上机测aa顺序,根据已测出的蛋白质的aa顺序,把这些片段进行定位,就能找到二硫键的位置。
如下图:
4.蛋白质一级结构测定的意义
<1>分子进化:
将不同生物的同源蛋白质的一级结构进行比较,以人的为最高级,从而确定其它物种的进化程度,也可以制成进化树,由于这是由数据决定的,因此比形态上确定的进化更加科学和精确。
<2>证明了一个理论,即蛋白质的一级结构决定高级结构,最终决定蛋白质的功能。
<3>疾病的分子生物学:
镰刀型贫血症的内因是血红蛋白的β6Val,正常的血红蛋白的β6Glu
三.蛋白质的二级结构
1.二级结构概论
<1>二级结构的定义:
肽链主干在空间的走向。
主干指的是肽平面与α-C构成的链子,见P95。
<2>二级结构的内容:
空间走向以及维持这种走向的力量:
氢键和R基团的影响(离子键、疏水键、空间障碍等)
<3>二级结构的数学描述:
ф角:
肽平面绕N-Cα单键旋转的角度
ψ角:
肽平面绕Cα-C羧基单键旋转的角度,见P95。
至于+-方向的规定,0度角的规定太复杂,不作要求。
这样,一个肽平面的空间位置可以被2个二面角来确定,如果每个肽链的两个二面角(ф,ψ)都相同,则构成了规则的空间走向,所以可以用(ф,ψ)来描述肽链的二级结构。
2.二级结构的常见类型
Pauling的贡献,X光衍射法是研究蛋白质构象的最好技术,羊毛蛋白和蚕丝蛋白,单调一致,诺贝尔化学奖。
<1>α-右手螺旋
α-螺旋即像弹簧一样的螺旋,有右手与左手之分,自然选择蛋白质的α-螺旋为右手螺旋。
示范。
α-右手螺旋的数据:
每一圈含有3.6个aa残基(或肽平面),见P96的b,每一圈高5.4Å,即每一个aa残基上升1.5Å,旋转了100度,2个二面角(ф,ψ)=(-570,-480)。
维持α-右手螺旋的力量是链内氢键,它产生于一个肽平面的C=O与相邻一圈的在空间上邻近的另一个肽平面的N-H之间,见P96b,它的方向平行于螺旋轴,因此,α-右手螺旋的外观是个筒状的帘子,见P96c。
每个氢键串起的长度为3.6个肽平面或3.6个aa残基,被氢键串起来的这个环上含有13个原子,故α-右手螺旋也被称为3.613螺旋。
R基团对α-右手螺旋的影响:
破坏者Pro,该处折断,因为亚氨基不能形成氢键;不稳定者酸性、碱性、太大、太小:
Glu、Asp、Arg、Lys、Gly、Ile。
其它都是起稳定作用的。
分布:
毛发中的α-角蛋白,例如头发中的α-角蛋白。
见沈同P155。
<2>β-折叠:
肽链在空间的走向为锯齿折叠状,见P97。
跟纤维素的相似。
二面角(ф,ψ)=(-119℃,+113℃)。
维持β-折叠的力量:
链间的氢键,它产生于一个肽平面的C=O与相邻肽链的在空间上邻近的另一个肽平面的N-H之间,见P98,两条肽链上的肽平面互相平行,形成片层结构。
见P97。
β-折叠有平行式和反平行式两种见P98。
平行式:
两条链的走向相同,N-C
N-C
反平行式:
两条链的走向相反,N-C
C-N
反平行式的β-折叠比平行式的更稳定
一条肽链回折后就可形成两条走向相反肽段,就可以形成反平行式的β-折叠,β-折叠不限于两条肽链之间,多条肽链可以形成很宽的β-折叠片层,片层与片层之间以范德华力相互作用,形成厚厚的垫子。
α-右手螺旋与β-折叠相比更具弹性,不易拉断,β-折叠易拉断,α-右手螺旋经加热后可变成β-折叠,长度增加,毛衣越洗越长也是这种变化。
<3>左手螺旋:
存在于胶原蛋白中,aa残基组成为(-Gly-Pro-Y-),Y为HyPro或HyLys靠链间氢键和范德华力来维持。
见沈同P158。
<4>U型回折:
也叫β-转角,肽链在某处回折1800所形成的结构。
这个结构包括的长度为4个aa残基,其中的第三个为Gly,稳定该结构的力量是第一和第四个aa残基之间形成的氢键。
在黑板上演示。
<5>310螺旋:
是α-右手螺旋的过渡形式,又廋又长,每个氢键串起的长度为3个肽平面或3.6个aa残基,被氢键串起来的这个环上含有10原子。
<6>无规卷曲:
无固定的走向,但也不是任意变动的,它的2个二面角(ф,ψ)有个变化范围。
从结构的稳定性上看α-右手螺旋>β-折叠>U型回折>无规卷曲,而从功能上看正好相反,酶与蛋白质的活性中心通常由无规卷曲充当,α-右手螺旋和β-折叠一般只起支持作用。
3.超二级结构:
空间相邻的几个2级结构形成的更复杂的结构,其类型有
<1>左手超螺旋:
3根α-右手螺旋拧到一起形成一个左手超螺旋,如头发中的角蛋白,见沈同P155。
<2>右手超螺旋:
3根左手螺旋拧到一起形成一个右手超螺旋,如胶原蛋白,见沈同P158。
本教材P103有误。
<3>αα:
相邻的2根α-右手螺旋拧到一起形成一个左手超螺旋,见P98。
<4>β×β:
一个连接链连着2个β折叠,平行式,这个连接链可以很长。
见P98。
<5>βαβ:
3段β折叠和2段α螺旋相间形成,见P98。
<6>βββ:
以2段U-型回折连接着的3段β折叠,反平行式。
见P98。
4.结构域:
长肽链(多于15