三相桥式整流电路的设计带反电动势负载.docx

上传人:b****4 文档编号:2840724 上传时间:2022-11-15 格式:DOCX 页数:18 大小:593.20KB
下载 相关 举报
三相桥式整流电路的设计带反电动势负载.docx_第1页
第1页 / 共18页
三相桥式整流电路的设计带反电动势负载.docx_第2页
第2页 / 共18页
三相桥式整流电路的设计带反电动势负载.docx_第3页
第3页 / 共18页
三相桥式整流电路的设计带反电动势负载.docx_第4页
第4页 / 共18页
三相桥式整流电路的设计带反电动势负载.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

三相桥式整流电路的设计带反电动势负载.docx

《三相桥式整流电路的设计带反电动势负载.docx》由会员分享,可在线阅读,更多相关《三相桥式整流电路的设计带反电动势负载.docx(18页珍藏版)》请在冰豆网上搜索。

三相桥式整流电路的设计带反电动势负载.docx

三相桥式整流电路的设计带反电动势负载

课程设计(论文)任务及评语

院(系):

电气工程学院教研室:

自动化

学号

学生姓名

专业班级

自动化111

课程设计(论文)题目

三相桥式整流电路的设计(带反电动势负载)

课程设计(论文)任务

课题完成的功能、设计任务及要求、技术参数

整流电路就是把交流电能转换成直流电能的电路,多数由变压器、整流主电路和滤波器等组成,在直流电动机的调速、发电机励磁调节、电解及电镀等领域得到广泛地应用。

整流电路的种类很多,工业上广泛应用的三相桥式全控整流电路是从三相半波电路发展而来的。

两组三相半波整流电路,一组是共阴极,另一组是共阳极串联组成。

设计任务及要求

1、确定系统设计方案,各器件的选型;

2、设计主电路、触发电路、保护电路;

3、各参数的计算(输出平均电压、平均电流、有功功率及波形分析);

4、建立仿真模型,验证设计结果。

5、撰写、打印设计说明书一份;设计说明书应在4000字以上。

技术参数

输入电压:

三相交流380V,50HZ

整流输出电压0~110V,电流最大值10A,反电动势40V,电阻10欧姆

进度计划

1、布置任务,查阅资料,确定系统方案(1天)

2、系统功能分析(1天)

3、系统方案确定(1天)

4、主电路、触发电路等设计(2天)

5、各参数计算(1天)

6、仿真分析与研究(2天)

7、撰写、打印设计说明书(1天)

8、答辩(1天)

指导教师评语及成绩

 

平时:

论文质量:

答辩:

总成绩:

指导教师签字:

年月日

注:

成绩:

平时20%论文质量60%答辩20%以百分制计算

摘要

整流电路就是把交流电能转换成直流电能的电路,大多数整流电路由变压器、整流主电路和滤波器等组成,在直流电动机的调速、发电机励磁调节、电解及电镀等领域得到广泛地应用。

整流电路由主电路、滤波器和变压器组成。

本次三相桥式电路整流器的设计采用的是三相全控桥整流电路,电路设计在带反电动势负载下完成。

系统电路主要包括,三相桥式整流器主电路设计,晶闸管相控触发电路设计,过电流和过电压保护电路设计三个部分,因而整个系统设计就大体从这三个电路部分来设计完成。

通过MatlAB软件对主电路进行仿真获得相应的输出电压、电流波形,与理论上的输出波形进行对比。

关键词:

整流;变压;触发;保护电路;MatlAB

目录

第1章绪论1

第2章课程设计的方案2

2.1概述2

2.2系统组成总体结构2

第3章三相桥式全控整流主电路的设计3

3.1主电路设计及原理3

3.2主电路设计的原理3

3.3输出参数计算7

第4章外围电路设计及元件选择9

4.1触发电路的设计9

4.1.1电路图的选择……………………………………………..9

4.1.2触发电路原理说明………………………………………10

4.2保护电路的设计11

4.2.1主电路的过电压保护……………………………………11

4.2.2晶闸管的过电压保护……………………………………12

4.2.3晶闸管的过电流保护……………………………………13

4.3整流变压器的参数计算13

第5章三相桥式整流电路的MatlAB仿真15

第6章课程设计总结17

参考文献18

第1章绪论

电子技术包括信息电子技术和电力电子技术两大分支。

通常所说的模拟电子技术和数字电子技术都属于信息电子技术。

电力电子技术是应用于电力领域的电子技术。

具体的说,就是使用电力电子器件对电能进行变换和控制的技术。

所用的电力电子器件均用半导体制成,故也称为电力半导体器件。

电力电子技术所变换的“电力”,功率可以大到数百MW甚至GW,也可以小到数W甚至1W以下。

信息电子技术主要用于信息处理,而电力电子技术则主要用于电力变换。

电力电子涉及由半导体开关启动装置进行电源的控制与转换领域。

半导体整流控制、半导体硅整的小型化等的出现,产生一个新的电力电子应用领域。

半导体硅整流、汞弧整流器应用于控制电源,但是这样的整流回路只是工业电子的一部分,对于汞弧整流器应用范围而言是有局限的。

半导体硅整流的应用涉及很多领域,如汽车、电站、航空电子、高频变频器等。

整流电路就是把交流电能转换成直流电能的电路,大多数整流电路由变压器、整流主电路和滤波器等组成,在直流电动机的调速、发电机励磁调节、电解及电镀等领域得到广泛地应用。

整流电路由主电路、滤波器和变压器组成。

随着科学技术的日益发展人们对电路的要求越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定,利用它可方便得到大、中、小各种容量的直流电能,是目前获得直流电能的主要方法,得到了广泛应用。

在电能的生产和传输上,目前以交流电为主。

电力网供给用户的是交流电,而在许多场合,例如电解、蓄电池的充电、直流电动机等,需要用直流电。

要得到直流电,除了直流发电机外最普遍应用的是利用各种半导体元件产生直流电。

这个方法中,整流是最基础的一步。

整流,即利用具有单向导电性的器件,把方向和大小交变的电流变换为直流电。

本设计主要是对三相桥式全控整流电路(带反电动势的负载)的研究。

20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。

整流电路的种类很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。

工业上广泛应用的三相桥式全控整流电路是从三相半波电路发展而来的。

三相桥式全控整流电路与三相半波电路相比,输出整流电压提高一倍,输出电压的脉动率高,基波频率为300HZ,在负载要求相同的直流电压下,晶闸管承受的最大正方向电压将比三相半波减少一半,变压器的容量也比较小,同时三相电流平衡,无须中线。

所以,三相桥式全控整流电路多用于直流电动机或要求实现有源逆变的负载。

第2章

课程设计的方案

概述

本设计是三相全控桥式整流电路的设计。

而三相桥式整流电路作用是给直流电动机供电,可以知道这是一个交流到直流的变换电路,即整流电路。

直流电动机负载可以看成是三相全控桥式电路接一个反电动势负载,由此可以得出此设计的重点在于设计三相全控桥式晶闸管整流电路实现交流到直流的转换,且保证输出的直流电压和电流能使电动机工作在电动状态即可。

然后分别对主电路及触发电路进行设计。

技术要求,输入电压:

三相交流380V,50HZ,整流输出电压0~110V,电流最大值10A,反电动势40V,电阻10欧姆。

系统组成总体结构

本设计是三相全控桥式整流电路的设计。

主要由主电路、触发电路、保护电路三部分组成,主电路主要完成对交流电到直流电的整流过程,触发电路控制晶闸管的导通和关断控制输出电压的大小,保护电路保护主电路中的元器件。

总体框图如图2.1所示。

 

图2.1系统总框图

第3章三相桥式全控整流主电路的设计

主电路设计及原理

将阴极连接在一起的3个晶闸管(VT1、VT3、VT5)称为共阴极组;阳极连接在一起的3个晶闸管(VT4、VT6、VT2)称为共阳极组。

习惯上我们希望晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与U、V、W三相电源相接的3个晶闸管分别为VT1、VT3、VT5,共阳极组中与U、V、W三相电源相接的3个晶闸管分别为VT4、VT6、VT2,。

又后面的分析可知,晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6

图3.1主电路的设计

主电路设计的原理

整流电路的负载为带反电动势的阻感性负载。

当晶闸管触发角α=0°时,此时,对于共阴极组的3个晶闸管,阴极所接交流电压值最高的一个导通。

而对于共阳极组的3个晶闸管,则是阴极所接交流电压值最低的一个导通。

这样任意时刻共阳极组和共阴极组中各有1个晶闸管处于导通状态,施加于负载上的电压为某一线电压。

工作波形如图3.2所示。

图3.2反电动势α=0°时的波形

α=0o时,各晶闸管均在自然换相点处换相。

在分析ud的波形时,既可从相电压波形分析,也可以从线电压波形分析。

从相电压波形看,以变压器二次侧的中点n为参考点,共阴极组晶闸管导通时,整流输出电压ud1为相电压在正半周的包络线;共阳极组导通时,整流输出电压ud2为相电压在负半周的包络线,总的整流输出电压ud=ud1-ud2是两条包络线间的差值,将其对应到线电压波形上,即为线电压在正半周的包络线。

直接从线电压波形看,由于共阴极组中处于通态的晶闸管对应的最大(正得最多)的相电压,而共阳极组中处于通态的晶闸管对应的是最小(负得最多)的相电压,输出整流电压ud为这两个相电压相减,是线电压中最大的一个,因此输出整流电压ud波形为线电压在正半周的包络线。

由于负载端接得有电感且电感的阻值趋于无穷大,当电流增加时,它的极性阻止电流增加,当电流减小时,它的极性反过来阻止电流减小。

电感的这种作用使得电流波形变得平直,电感无穷大时趋于一条平直的直线。

为了说明各晶闸管的工作的情况,将波形中的一个周期等分为6段,每段为

60o,如图2所示,每一段中导通的晶闸管及输出整流电压的情况如表所示。

由该表3.1可见,6个晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6。

表3-1α=0o时晶闸管工作情况

时段

共阴极组中导通的晶闸管

VT1

VT1

VT3

VT3

VT5

VT5

共阳极组中导通的晶闸管

VT6

VT2

VT2

VT4

VT4

VT6

输出电压Ud

Uab

Uac

Ubc

Uba

Uca

Ucb

图3.3 给出了α=30o时的波形。

从ωt1角开始把一个周期等分为6段,每段为60o与α=0o时的情况相比,一周期中ud波形仍由6段线电压构成,每一段导通晶闸管的编号等仍符合表1的规律。

区别在于,晶闸管起始导通时刻推迟了30o,组成 ud 的每一段线电压因此推迟30o,ud平均值降低。

晶闸管电压波形也相应发生变化如图所示。

图中同时给出了变压器二次侧a相电流 ia 的波形,该波形的特点是,在VT1处于通态的120o期间,ia为正,由于大电感的作用,ia波形的形状近似为一条直线,在VT4处于通态的120o期间,ia波形的形状也近似为一条直线,但为负值。

 

图3.3α=30o时的波形

由以上分析可见,当α≤60o时,ud波形均连续,对于带大电感的反电动势,id波形由于电感的作用为一条平滑的直线并且也连续。

当α>60o时,如α=90o时电阻负载情况下的工作波形如图3.4所示,ud平均值继续降低,由于电感的存在延迟了VT的关断时刻,使得ud的值出现负值,当电感足够大时,ud中正负面积基本相等,ud平均值近似为零。

这说明带阻感的反电动势的三相桥式全控整流电路的α角的移相范围为90度。

 

图3.4α=90o时的波形

输出参数计算

三相桥式全控整流电路中,整流输出电压Ud的波形在一个周期内脉动6次,且每次脉动的波形相同,因此在计算平均值时,只需要一个脉动进行计算即可。

应为0°≤α≤90°时输出电流波形是连续的,以线电压的过零点为时间坐标的零点,可得到整流输出电压的平均值。

当输出电压为0V时

α=0°;

输出电压为110V时

α=77.7°;

由此可知要使输出电压在0~110V只要使触发角在0°~77.7°之间变化。

输出电流平均值

电压器二次侧电流

流过晶闸管的电流平均值Idt、有效值It和晶闸管承受的最高电压Utm

第4章外围电路设计及元件选择

触发电路的设计

电路图的选择

晶闸管具有硅整流器件的特性,能在高压。

大电流下工作,且工作过程可以控制。

被广泛应用与可控整流、交流

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 经济市场

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1