用导数研究三次函数.docx

上传人:b****5 文档编号:28321802 上传时间:2023-07-10 格式:DOCX 页数:15 大小:40.97KB
下载 相关 举报
用导数研究三次函数.docx_第1页
第1页 / 共15页
用导数研究三次函数.docx_第2页
第2页 / 共15页
用导数研究三次函数.docx_第3页
第3页 / 共15页
用导数研究三次函数.docx_第4页
第4页 / 共15页
用导数研究三次函数.docx_第5页
第5页 / 共15页
点击查看更多>>
下载资源
资源描述

用导数研究三次函数.docx

《用导数研究三次函数.docx》由会员分享,可在线阅读,更多相关《用导数研究三次函数.docx(15页珍藏版)》请在冰豆网上搜索。

用导数研究三次函数.docx

用导数研究三次函数

用导数研究三次函数

一、知识点解析

1定义:

定义1、形如y=ax3∙bx2∙CX∙d(a=0)的函数,称为“三次函数”。

定义2、三次函数的导函数为二次函数:

f/(x)=3ax22bxc(a=0),我们把

22

=4b-12ac=4(b-3ac),叫做三次函数导函数的判别式。

2、三次函数图象与性质的探究:

1、单调性

232

一般地,当b-3ac二0时,三次函数y=axbx∙cχ∙d(a=0)在R上是单调函数;当b-3ac0时,三次函数y=axbxCXd(a0)在R上有三个单调区间。

2、对称中心

32

三次函数f(x)=axbxCXd(^∙-z0)是关于点对称,且对称中心为点

bb

(—If(—)),此点的横坐标是其导函数极值点的横坐标。

3a3a

y=f(x)图象的对称中心在导函数y=∕'O)的对称轴上,且又是两个极值点的中点,

同时也是二阶导为零的点。

3、三次方程根的问题

(1)当.∙,=b2_3ac乞0时,由于不等式「(X)恒成立,函数是单调递增的,所以原方程仅有一个实根。

(2)当厶=b2_3ac■0时,由于方程f(X)=0有两个不同的实根x1,X2,不妨设Xi:

x2,可知,(χ1,f(χj)为函数的极大值点,(X2,f(x2))为极小值点,且函数y=f(x)在(」:

,X1)和(x2,■--)上单调递增,在"x1,x2I上单调递减。

此时:

1若f(x1)f(x2)0,即函数y=f(x)极大值点和极小值点在X轴同侧,图象均与X轴只有一个交点,所以原方程有且只有一个实根。

2若f(χ1)f(χ2):

0,即函数y=f(x)极大值点与极小值点在X轴异侧,图象与X轴必有三个交点,所以原方程有三个不等实根。

3若f(X1)f(X2^0,即f(X1)与f(X2)中有且只有一个值为0,所以,原方程有三个实

根,其中两个相等。

4、极值点问题

若函数f(X)在点Xo的附近恒有f(X0)≥f(X)(或f(X0)≤f(x)),则称函数f(x)在点Xo处取得极大值(或极小值),称点Xo为极大值点(或极小值点)。

当.「0时,三次函数y=fX在一:

,•:

:

上的极值点要么有两个。

当「:

_0时,三次函数y=fx在-:

L上不存在极值点。

5、最值问题。

函数JV∈[^f丹h若心w[删F畀],且

'-'I1,则:

fmaXX-∖fm,fXo,fn:

■;,「、。

6、过三次函数上一点的切线问题

32

设点P为三次函数f(χ)=axbX∙ex∙d(a=0)图象上任一点,则过点P—定有直线与y=f(X)的图象相切。

若点P为三次函数图象的对称中心,则过点P有且只有一条切线;若点P不是三次函数图象的对称中心,则过点P有两条不同的切线。

7、过三次函数外一点的切线问题

32

设点P(X0,yO)为三次函数f(x)=axbxexd(a=0)图象外,则过点P—定有直线与N=f(X)图象相切。

可能有一条、两条或三条。

(具体情况分析不作要求)

8、f(x)=ax3bx2exd(a-0)类似于二次函数的图像和性质表:

的交点

单调性

在(—IXj和(X2,畑)上为增函数•,在(X1,X2)上为减函数

在R上为增函数

极值

有两个极值,一个极大值f(xj,—个极小值f(X2)

无极值

 

、经典题型

一、考查函数的奇偶性和单调性

例1已知函数f(x)=x3+px+q(x∈R)是奇函数,且在R上是增函数,则()

A、p=0,q=0B、P∈R,q=0

CP≤0,q=0

D、P≥0,q=0

解析由奇函数以及增函数的定义易知选

D

二、考查函数图象的对称性

例2函数f(x)=x3-3x2+x-1的图象关于(

)对称

A、直线x=1B、直线y=x

C点(1,-2)

D、原点

解析由f(x)=ax3+bχ2+cx+d(a≠0)的图象关于-3⅛,d-牆•黑成中心对称知选C

27a

22

例3、(2013课标全国,16)若函数f(x)=(1-x)(X+ax+b)的图像关于直线x=-2

对称,则f(x)的最大值为

22f(0)=f(—4)

解析:

函数f(x)=(1-X)(x+ax+b)的图象关于直线x=-2对称,则J

f

(1)=f(—5)

解得a=8,b=5,所以f(x)=(1-χ2)(χ2∙8χ15)可以解得f(x)的最大值为16。

三、运用函数的性质和数形结合思想解题

32....

例4已知函数f(x)=ax+bx+cx+d的图象如图所示,则(

A、b∈(-∞,0)B、b∈(0,1)

Cb∈(1,2)D、b∈(2,+∞)

解析显然f(0)=d=0,由f(x)=ax(x-1)(x-2)知a>0,又f(x)=ax-3ax+2ax比较系数可知b=-3a<0,故选A引申试确定的a,b,c,d符号(答:

a>0,b<0,c>0,d=0)

例5(2013课标全国π卷,10)已知函数f(x)=x3+ax2+bx+c下列结论中错误的是()

(A)TXα∈R,f(Xα)=0

(B)函数y=f(x)的图像是中心对称图形

(C)若Xa是f(x)的极小值点,贝Uf(x)在区间(-∞,Xα)单调递减

(D)若X0是f(X)的极值点,贝Uf'X0=0

解析:

由三次函数值域为R知f(x)=0有解,A正确;由性质可知B正确;由性质可知若f(x)有极小值点,则f(X)=0由两个不相等的实数根X1,X2(X1:

X2),f(x)=3x2∙2ax∙b=3(x-XI)(X-x2),则f(x)在(-∞,xQ上为增函数,在(xhx2)上

为减函数,在(X2,,:

)上为增函数,故C错。

D正确。

选CO

四、考查单调区间、极值、最值的问题

32

例6(2010年全国卷∏文)已知函数f(X)=X-3ax+3x+1°

(I)设a=2,求f(X)的单调区间;

(∏)设f(X)在区间(2,3)中至少有一个极值点,求a的取值范围。

解析:

(2)求出函数的导数f(X),在(2,3)内有极值,即为f(X)在(2,3)内

有一个零点,即可根据f⑵f(3)“°,即可求出a的取值范围。

五、考查交点个数问题

3

例7(2009陕西文2°)已知函数f(x)=X-3ax-1,a°

(1)求f(X)的单调区间;

(II)若f(X)在X=_1处取得极值,直线y=m与y=f(X)的图象有三个不同的交点,

求m的取值范围.

解:

(1)f'(x)=3x2-3a=3(x2-a),

当a<0时,对X∙R,有f'(x)0,所以f(x)的单调增区间为(-:

,•:

当a0时,由f(x)>0解得X<-Va或XAJa,由f(X)<0解得一為*G,

所以f(x)的单调增区间为、a),(.a,:

),单调减区间为(-.a,.a)∙

(2)因为f(X)在x=-1处取得极大值,所以f'(-i)=3(-1)2-3a=0,∙a=1.

所以f(x)=x-3x-1,f(x)=3x-3由彳(x)=0解得x1--1,x2=1∙

(1)中f(X)的单调性可知,f(X)在X=-1处取得极大值1,在X=1处取得极小值-3.

因为直线与函数月=f(X)的图象有三个不同的交点,所以m的取值范围是(-3,1).

点评:

(1)本题是三次函数零点存在性问题的典型变式题,涉及图象交点向函数零点的转化关系;

(2)本题最终将问题转化为研究三次函数根的分布,采用极值(最值)控制法;

(3)在这里应结合上面例题进一步揭示研究二次方程与三次方程实根分布问题在方法上

的本质关系,以便进一步加深对函数极值(最值)的认识和对利用导数研究函数性质.

六、考查曲线的切线问题

3

例8(2007全国II理22)已知函数f(x)=X-X.

(1)求曲线y=f(x)在点M(t,f(t))

处的切线方程;

(2)设a0,若过点(a,b)可作曲线y=f(x)的三条切线,证明:

£:

b:

f(a)

解:

(1)f(x)的导数f(x)=3χ2-1•曲线y=f(x)在点M(t,f(t))处的切线方程为:

23

y一f(t)=f(t)(x—t),即y=(3t—1)x—2t•

23

(2)如果有一条切线过点(a,b),则存在t,使b=(3t-1)a-2t.

若过点(a,b)可作曲线y=f(X)的三条切线,

2

则方程2t-3ata^0有三个相异的实数根.

记g(t)=2t3-3at2ab,则g(t)=6t2-6at=6t(t-a).

当t变化时,g(t),g(t)变化情况:

t

(M,0)

0

(0,a)

a

(a,+曲)

g'(x)

+

0

0

+

g(x)

增函数

极大值

减函数

极小值

增函数

由g(t)的单调性,当极大值ab:

0或极小值b-f(a)∙0时,方程g(t)=O最多有一个实数

 

根;当a^O时,解方程g(t)=0得t=0,t=3a,即方程g(t)=0只有两个相异的实

2

a

数根;当b-f(a)=O时,解方程g(t)=0得t,t=a,即方程g(t)=0只有两个相异

2

的实数根.

综上所述,如果过(a,b)可作曲线y=f(x)三条切线,即g(t)=0有三个相异的实数

Ia+b>0,

根,贝U即—a:

b:

f(a).

lb—f(a)cθ.

点评:

(1)本题是前一个问题的延伸,其以导数几何意义为载体;

(2)本题最终将问题转化为研究三次函数根的分布,采用极值(最值)控制法;

(3)在这里应结合上面例题进一步揭示研究二次方程与三次方程实根分布问题在方法上的本质关系,以便进一步加深对函数极值(最值)的认识和对利用导数研究函数性质

七、含参数的恒成立问题

例9(2008年安徽文)

设函数f(X)=旦X3_3X(a■1)x-1,其中a为实数。

32

(I)已知函数f(X)在x=1处取得极值,求a的值;

(∏)已知不等式f(x).χ2「X-a1对任意a(0,•:

)都成立,求实数X的取值范围。

解析:

(I)f(X)=ax-3x(a1),由于函数f(x)在x=1时取得极值,所以f

(1)=0即a-3a1=0,.∙∙a=1

对于问题(∏)有两种方法:

方法一转化为关于a的函数g(a)

22

由题设知:

ax-3x(a1)X-x-aT对任意a(0√:

)都成立

22

即a(x•2)-X-2x0对任意a(0,匸:

)都成立

设g(a)=a(x2+2)—X2—2x(a^R),则对任意XER,g(a)为单调递增函数

所以对任意a∙(0,•:

),g(a)0恒成立的充分必要条件是g(0)_0

即-x2-2x_0,.∙.-2_x_0

于是X的取值范围是IXI-2空X空0?

方法二恒成立问题,转化为不等式的最值问题

22

于是a

x22x

x22

对任意a•(0,•:

)都成立,即

X22x

X22

<0

由题设知:

ax-3x(a1)X-x-aV对任意a(0√:

:

)都成立

.一2^x^0

于是X的取值范围是IXI-2空X空0?

三、高考试题检测

•∙∙f(x)在X=2处取得极小值.

答案2

2、(2014辽宁,11)当x∈[—2,1]时,不等式aχ3—X2+4x+3≥0恒成立,则实数a的取值范围是()

A•[-5,—3]B』-6,—9'

C[—6,—2]D.[—4,—3]

解析

当x∈(0,

1]时,得a≥——4^+X令t=W,贝Ut∈[1,+∞),

a≥—3t3—4t2+1,令g(t)=—3t3—4t2+1,t∈[1,+∞),则g't)(—9t2—8t+1

=—(t+1)(9t—1),显然在[1,+∞)上,g'(t)<0,g(t)单调递减,所以g(t)max

=g

(1)=—6,因此a≥—6;同理,当X∈[—2,0)时,得a≤—2•由以上两种情况得—6≤a≤—2,显然当X=0时也成立•故实数a的取值范围为[—6,—

2]•

答案C

3、(2015陕西西安模拟)曲线f(x)=x3+x—2在p0处的切线平行于直线y=4x—1,则P0点的坐标为()

A.(1,0)B•(2,8)

C.(1,0)和(—1,—4)D.(2,8)和(一1,—4)

解析设p0(x0,y0),则3xo+1=4,所以X0=±,所以p0点的坐标为(1,0)和(—1,—4)•故选C.

答案C

4、(2015绵阳诊断)已知函数f(x)=X3+(1—a)x2—a(a+2)x+b(a,b∈R).

(1)若函数f(x)的图象过原点,且在原点处的切线斜率为一3,求a,b的值;

⑵若曲线y=f(x)存在两条垂直于y轴的切线,求a的取值范围.

解f'X)=3x2+2(1—a)x—a(a+2).

(1)由题意得J

f(0)=b=0,

F(0)=—a(a+2)=—3,

解得b=0,a=—3或1.

⑵•••曲线y=f(x)存在两条垂直于y轴的切线,

•••关于X的方程f'x)=3x2+2(1-a)x—a(a+2)=0有两个不相等的实数根,

∙°∙△=4(1—a)?

+12a(a+2)>0,

即4a2+4a+1>0,

•∙a≠-2

•a的取值范围是一∞,-1U—2+∞.

5.(2015江苏,19)已知函数f(x)=X3+ax2+b(a,b∈R).

⑴试讨论f(x)的单调性;

⑵若b=C-a(实数C是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(一∞,-3)U1,2U3,+∞,求C的值.

(1)f'x)=3x2+2ax,令f'x)=0,解得X1=0,X2=—鲁.

当a=0时,因为FX)=3x2>0(x≠0),

所以函数f(x)在(-∞,+∞)上单调递增;

当a>0时,x∈-∞,-2aU(0,+∞)时,f'(x)>0,x∈-号,0时,

f'(x)V0,所以函数f(x)在-∞,-2a,(0,+∞)上单调递增,在—号,0上单调递减;

当av0时,x∈(-∞,0)U-2a,+∞时,F(x)>0,x∈0,-号时,

F(x)V0,所以函数f(x)在(-∞,0),-23a,+∞上单调递增,在0,-上单调递减.

⑵由

(1)知,函数f(x)的两个极值为f(0)=b,f-2a=27a3+b,则函数f(x)有三个零点等价于f(0)•-2a=b27a3+bV0,

a>0,

从而

-

av0,

bv0或0vbv-27a3.

又b=C—a,所以当a>0时,27*'—a+c>0或当av0时,27*'—a+cv0.

设g(a)=^7a3-a+C,因为函数f(x)有三个零点时,a的取值范围恰好是(一∞,

—3)∪1,2U2,+∞,

则在(—∞,—3)上g(a)V0,且在i1,3U3,+∞上g(a)>0均恒成立.

从而g(—3)=c—1≤0,且g2=c—1≥0,因此C=1.

此时,f(x)=x3+ax2+1—a=(x+1)[x2+(a—1)x+1—a],

因函数有三个零点,贝Ux2+(a—1)x+1—a=0有两个异于一1的不等实根,所

以Δ=(a—1)—4(1—a)=a+2a—3>0,

且(—1)2—(a—1)+1—a≠0,

解得a∈(—∞,—3)U1,2U∣,+∞.综上C=1.

31

6、(2015新课标全国I,21)已知函数f(x)=x3+ax+4,g(x)=—lnx.

(1)当a为何值时,X轴为曲线y=f(x)的切线;

(2)用min{m,n}表示m,n中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),讨论h(x)零点的个数.

(1)设曲线y=f(x)与X轴相切于点(X0,0),贝Uf(x0)=0,f'(X0)=0.即

X3+ax0+4=0,

3x0+a=0,

X轴为曲线y=f(χ)的切线•

(2)当x∈(1,+∞)时,g(x)=—Inx<0,

从而h(x)=min{f(x),g(x)}≤g(x)<0,

故h(x)在(1,+∞)无零点.

55

当X=1时,若a≥—4,贝Uf

(1)=a+4≥0,h

(1)=min{f

(1),g

(1)}=g

(1)=0,

5

故X=1是h(x)的零点;若a<—”,贝Uf

(1)<0,h

(1)=min{f

(1),g

(1)}=f

(1)<0,

故X=1不是h(x)的零点.

当x∈(0,1)时,g(x)=—Inx>0.所以只需考虑f(x)在(0,1)的零点个数.

(i)若a≤—3或a≥0,则f'x)=3χ2+a在(0,1)无零点,故f(x)在(0,1)单调.而

15

f(0)=4,f(I)=a+4,所以当a≤-3时,f(x)在(0,1)有一个零点;当a≥0时,f(x)在(0,1)没有零点.

(ii)若—3

4.

1若fr■--3>0,即一4

f(x)在(0,1)无零点;

2若fi:

..:

-3=0,即a=—4,

则f(x)在(0,1)有唯一零点;

(/、31553

3若fiJ—3<0,即—3

(1)=a+4,所以当—4

5

时,f(x)在(0,1)有两个零点;当一3

3535

综上,当3>-4或3<-4时,h(x)有一个零点;当3=-4或3=-N时,h(x)有

53

两个零点;当一5<3<-4时,h(x)有三个零点.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 经管营销 > 经济市场

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1