非参数统计列联表卡方检验.docx

上传人:b****5 文档编号:28317967 上传时间:2023-07-10 格式:DOCX 页数:20 大小:235.43KB
下载 相关 举报
非参数统计列联表卡方检验.docx_第1页
第1页 / 共20页
非参数统计列联表卡方检验.docx_第2页
第2页 / 共20页
非参数统计列联表卡方检验.docx_第3页
第3页 / 共20页
非参数统计列联表卡方检验.docx_第4页
第4页 / 共20页
非参数统计列联表卡方检验.docx_第5页
第5页 / 共20页
点击查看更多>>
下载资源
资源描述

非参数统计列联表卡方检验.docx

《非参数统计列联表卡方检验.docx》由会员分享,可在线阅读,更多相关《非参数统计列联表卡方检验.docx(20页珍藏版)》请在冰豆网上搜索。

非参数统计列联表卡方检验.docx

非参数统计列联表卡方检验

非参数统计期末大作业

一、Wilcoxon符号秩检验

某个公司为了争夺竞争对手的市场,决定多公司重新定位进行宣传。

在广告创意中,预计广告投放后会产生效果。

一组不看广告组和一组看广告,抽取16位被调查者,让起给产品打分。

现有数据如下

不看广告

62

83

96

99

71

60

97

100

看广告

87

92

90

86

94

95

82

91

分析广告效应是否显著。

1、手算

建立假设:

H0:

广告效应不显著

H1:

广告效应显著

不看广告组记为x,看广告组记为y。

检验统计量计算表

X

Y

D=x-y

|D|

|D|的秩

D的符号

62

87

-25

25

7

-

83

92

-9

9

2.5

-

96

90

6

6

1

+

99

86

13

13

4

+

71

94

-23

23

6

-

60

95

-35

35

8

-

97

82

15

15

5

+

100

91

9

9

2.5

+

由表可知:

T+=1+4+5+2.5=12.5

T-=7+2.5+6+8=23.5

根据n=8,T+和T-中较大者T-=23.5,查表得,T+的右尾概率为0.230到0.273,在显著性水平

下,P值显然较大,故没有理由拒绝原假设,表明广告效应不显著。

2、Spss

在spss中输入八组数据(数据1):

选择非参数检验中的两个相关样本检验

对话框中选择Wilcoxon,输出如下结果(输出1):

Ranks

N

MeanRank

SumofRanks

看广告-不看广告

NegativeRanks

4a

3.12

12.50

PositiveRanks

4b

5.88

23.50

Ties

0c

Total

8

a.看广告<不看广告

b.看广告>不看广告

c.看广告=不看广告

由上表,负秩为4,正秩也为4,同分的情况为0,总共8。

负秩和为12.5,正秩和为23.5,与手算结果一致

TestStatisticsb

看广告-不看广告

Z

-.771a

Asymp.Sig.(2-tailed)

.441

a.Basedonnegativeranks.

b.WilcoxonSignedRanksTest

由上表,Z为负,说明是以负秩为基础计算的结果,其相应的双侧渐进显著性结果为0.441,明显大于0.05,因此在

的显著性水平下,没有理由拒绝原假设,即表明广告效应不显著,与手算的结论一致。

3、R语言(R语言1)

输入语句:

x=c(62,83,96,99,71,60,97,100)

y=c(87,92,90,86,94,95,82,91)

wilcox.test(x,y,exact=F,cor=F)

输出结果:

Wilcoxonranksumtest

data:

xandy

W=33,p-value=0.9164

alternativehypothesis:

truelocationshiftisnotequalto0

由输出结果可知,P=0.9164,远大于

=0.05,因此没有理由拒绝原假设,即广告效应并不显著,与以上结果一致。

 

二、Wald-Wolfowitz游程检验

有低蛋白和高蛋白两种料喂养大白鼠,以比较它们对大白鼠体重的增加是否有显著不同的影响,为此对m=10,n=10只大白鼠分别喂养低蛋白和高蛋白两种饲料,得增重量X,Y(单位:

g)的表如下:

饲料

增重量

低蛋白X

64

71

72

75

82

83

84

90

91

96

高蛋白Y

42

52

61

65

69

75

78

78

78

81

给定显著性水平

=0.05,试用游程检验法检验两种饲料的影响有无显著差异。

1、手算

建立假设:

H0:

两种饲料对大白鼠无显著差异

H1:

两种饲料对大白鼠有显著差异

将X,Y的数据按从小到大混合排列,得X,Y的混合样本序列:

YYYXYYXXXYYYYYXXXXXX

故得游程总数U=6,m=10,n=10,查表得,U=6的概率为0.019,由于是双侧检验,对于显著性水平

=0.05,对应的P值为2

因此拒绝原假设,即表明两种饲料对大白鼠有显著差异。

2、Spss

在spss中输入数据(数据2)

在非参数检验中选择两个独立样本检验

对话框:

在DefineGroups输入1和2。

在TestType选中Wald-Wolfowitzruns。

输出结果如下(输出2):

Frequencies

分组

N

增重量

1

10

2

10

Total

20

TestStatisticsb,c

NumberofRuns

Z

ExactSig.(1-tailed)

增重量

MinimumPossible

6a

-2.068

.019

MaximumPossible

8a

-1.149

.128

a.Thereare2inter-grouptiesinvolving4cases.

b.Wald-WolfowitzTest

c.GroupingVariable:

分组

由上表,P值与手算结果一致,因此也拒绝原假设,即表明两种饲料对大白鼠有显著差异。

三、Kolmogorov-Smirnov检验

为了研究两家电信运营商套餐在目标市场的年龄维度上的分布是否相同,该电信运营公司开展了一个社会调查活动。

数据如下:

两种通信套餐的用户年龄

套餐1

套餐2

18

22

18

48

25

51

22

34

24

42

23

26

26

44

31

38

分析两种套餐的目标市场年龄的分布是否存在显著性差异。

1、手算

建立假设:

H0:

两种套餐的目标市场年龄分布不存在显著差异

H1:

两种套餐的目标市场年龄分布存在显著差异

检验统计量D的计算表

年龄

f1

f2

S1(x)

S2(x)

S1(x)-S2(x)

18

1

0

1

0

1/7

0

1/7

18

1

0

2

0

2/7

0

2/7

22

1

1

3

1

3/7

1/9

20/63

23

1

0

4

1

4/7

1/9

29/63

24

1

0

5

1

5/7

1/9

38/63

25

1

0

6

1

6/7

1/9

47/63

26

1

1

7

2

1

2/9

7/9

31

0

1

7

3

1

3/9

6/9

34

0

1

7

4

1

4/9

5/9

38

0

1

7

5

1

5/9

4/9

42

0

1

7

6

1

6/9

3/9

44

0

1

7

7

1

7/9

2/9

48

0

1

7

8

1

8/9

1/9

51

0

1

7

9

1

1

0

由上表,找出检验统计量D=max

=7/9,m=7,n=9,mnD=

,查表得,相应的P值为0.008,在5%的显著性水平上,P值足够小,因此拒绝原假设,表明两种套餐的目标市场年龄分布存在显著差异。

2、spss

输入数据(数据3)

在非参数检验中选择两个独立样本检验:

对话框:

运营商1和2分类的变量输入到GroupingVariable,在DefineGroups输入1和2。

在TestType选中Kolmogorov-Smirnov。

在点Exact时打开的对话框中可以选择精确方法(Exact)。

输出结果如下(输出3);

Frequencies

运营商

N

年龄

1

7

2

9

Total

16

 

TestStatisticsa

年龄

MostExtremeDifferences

Absolute

.778

Positive

.000

Negative

-.778

Kolmogorov-SmirnovZ

1.543

Asymp.Sig.(2-tailed)

.017

ExactSig.(2-tailed)

.008

PointProbability

.006

a.GroupingVariable:

运营商

由上表:

精确计算的双尾P值为0.008,与手算结果一致,表明两种套餐的目标市场年龄分布存在显著差异。

 

四、k个独立样本的Kruskal-Wallis检验

为检测四种防护服对人脉搏的影响,找来20人试穿,每种有5人试穿,测量试穿者的脉搏,得到以下表格:

试穿者

防护服1

防护服2

防护服3

防护服4

1

130

104

123

133

2

111

116

119

128

3

114

106

115

130

4

123

98

120

112

5

115

104

117

110

问:

穿四种防护服测得的脉搏有无差异。

1、手算

建立假设:

H0:

测得的脉搏没有显著差异

H1:

测得的脉搏有显著差异

脉搏等级整理如下:

防护服1

防护服2

防护服3

防护服4

18.5

2.5

15.5

20

6

11

13

17

8

4

9.5

18.5

15.5

1

14

7

9.5

2.5

12

5

秩和

57.5

21

64

67.5

计算检验统计量H:

查表:

自由度df=3,显著性水平

临界值卡方=7.82。

显然,H=7.854>卡方=7.82,所以拒绝原假设,表明四种防护服对脉搏的影响有显著差异。

2、spss

输入20个观测值(数据4)

在非参数检验中选择k个独立样本检验

防护服分组定义为1到4

操作如下图:

输出结果如下(输出4):

Ranks

防护服

N

MeanRank

脉搏

1

5

11.50

2

5

4.20

3

5

12.80

4

5

13.50

Total

20

 

TestStatisticsa,b

脉搏

Chi-Square

7.878

df

3

Asymp.Sig.

.049

a.KruskalWallisTest

b.GroupingVariable:

防护服

由上表,卡方与手算十分接近,拒绝原假设,即表明四种防护服对脉搏的影响有显著性差异。

3、中位数检验

20个数,中位数为115.5,

整理每个总体中大于或小于该中位数的观测值个数,如下表:

1

2

3

4

>115.5

2

1

4

3

10

<=115.5

3

4

1

2

10

5

5

5

5

20

计算Q检验量

Q统计量小于卡方=7.82,没有理由拒绝原假设,表明四种防护服对脉搏的影响没有显著差异。

Spss:

在testtype中选择中位数,输出结果如下:

Frequencies

防护服

1

2

3

4

脉搏

>Median

2

1

4

3

<=Median

3

4

1

2

 

TestStatisticsb

脉搏

N

20

Median

115.50

Chi-Square

4.000a

df

3

Asymp.Sig.

.261

a.8cells(100.0%)haveexpectedfrequencieslessthan5.Theminimumexpectedcellfrequencyis2.5.

b.GroupingVariable:

防护服

卡方值为4,与手算结果一致,不拒绝原假设,即表明四种防护服对脉搏的影响没有显著性差异

综上,两种算法的结果不一致!

4、R语言

输入语句(R语言2):

x=c(130,111,114,123,115,104,116,106,98,104,123,119,115,120,117,133,128,130,112,110)

y=c(1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4)

kruskal.test(x,y)

输出结果:

>kruskal.test(x,y)

Kruskal-Wallisranksumtest

data:

xandy

Kruskal-Wallischi-squared=7.878,df=3,p-value=0.0486

与以上的手算和KS检验法结果一致,拒绝原假设,表明四种防护服防护服对脉搏的影响存在显著差异。

五、列联表卡方检验

一种原料来自三个不同的地区,原料质量被分成三个不同等级。

从这批原料中随机抽取500件进行检验,得样本数据如下表所示,要求检验地区与原料质量之间有无依赖关系。

 

一级

二级

三级

合计

地区1

52

64

24

140

地区2

60

59

52

171

地区3

50

65

74

189

合计

162

188

150

500

1、手算:

建立假设:

地区

等级

1

1

52

45.36

0.97

1

2

64

52.64

2.45

1

3

24

42

7.71

2

1

60

55.4

0.38

2

2

59

64.3

0.44

2

3

52

51.3

0.01

3

1

50

61.24

2.06

3

2

65

71.06

0.52

3

3

74

56.7

5.28

合计

19.82

查表得,

,由于Q=19.82>

,因此拒绝原假设,即认为地区与原料质量相关。

2、SPSS:

操作:

Data——WeightCases

Analyze——DescriptiveStatistics——Crosstabs

地区*等级Crosstabulation

等级

Total

一级

二级

三级

地区

地区1

Count

52

64

24

140

ExpectedCount

45.4

52.6

42.0

140.0

地区2

Count

60

59

52

171

ExpectedCount

55.4

64.3

51.3

171.0

地区3

Count

50

65

74

189

ExpectedCount

61.2

71.1

56.7

189.0

Total

Count

162

188

150

500

ExpectedCount

162.0

188.0

150.0

500.0

Chi-SquareTests

Value

df

Asymp.Sig.(2-sided)

ExactSig.(2-sided)

ExactSig.(1-sided)

PointProbability

PearsonChi-Square

19.822a

4

.001

.b

LikelihoodRatio

20.732

4

.000

.000

Fisher'sExactTest

20.510

.000

Linear-by-LinearAssociation

13.963c

1

.000

.000

.000

.000

NofValidCases

500

a.0cells(.0%)haveexpectedcountlessthan5.Theminimumexpectedcountis42.00.

b.Cannotbecomputedbecausethereisinsufficientmemory.

c.Thestandardizedstatisticis3.737.

由输出结果可知,检验统计量为19.822,精确双尾显著性概率P远远小于显著性水平0.05,因此拒绝原假设,即认为地区与原料质量相关。

与手算结果一致。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 农林牧渔 > 水产渔业

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1