电磁场计算题专项练习.docx
《电磁场计算题专项练习.docx》由会员分享,可在线阅读,更多相关《电磁场计算题专项练习.docx(16页珍藏版)》请在冰豆网上搜索。
电磁场计算题专项练习
电磁场计算题专项练习
一、电场
1、(20分)如图所示,为一个实验室模拟货物传送的装置,A是一个表面绝缘质量为1kg的小车,小车置于光滑的水平面上,在小车左端放置一质量为0.1kg带电量为q=1×10-2C的绝缘货柜,现将一质量为0.9kg的货物放在货柜内.在传送途中有一水平电场,可以通过开关控制其有、无及方向.先产生一个方向水平向右,大小E1=3×102N/m的电场,小车和货柜开始运动,作用时间2s后,改变电场,电场大小变为E2=1×102N/m,方向向左,电场作用一段时间后,关闭电场,小车正好到达目的地,货物到达小车的最右端,且小车和货物的速度恰好为零。
已知货柜与小车间的动摩擦因数µ=,(小车不带电,货柜及货物体积大小不计,g取10m/s2)求:
⑴第二次电场作用的时间;
⑵小车的长度;
⑶小车右端到达目的地的距离.
]
16(8分)如图所示,水平轨道与直径为d=0.8m的半圆轨道相接,半圆轨道的两端点A、B连线是一条竖直线,整个装置处于方向水平向右,大小为103V/m的匀强电场中,一小球质量m=0.5kg,带有q=5×10-3C电量的正电荷,在电场力作用下由静止开始运动,不计一切摩擦,g=10m/s2,
(1)若它运动的起点离A为L,它恰能到达轨道最高点B,求小球在B点的速度和L的值.
(2)若它运动起点离A为L=2.6m,且它运动到B点时电场消失,它继续运动直到落地,求落地点与起点的距离.
、
!
6如图所示,两平行金属板A、B长l=8cm,两板间距离d=8cm,A板比B板电势高300V,即UAB=300V。
一带正电的粒子电量q=10-10C,质量m=10-20kg,从R点沿电场中心线垂直电场线飞入电场,初速度v0=2×106m/s,粒子飞出平行板电场后经过界面MN、PS间的无电场区域后,进入固定在中心线上的O点的点电荷Q形成的电场区域(设界面PS右边点电荷的电场分布不受界面的影响)。
已知两界面MN、PS相距为L=12cm,粒子穿过界面PS最后垂直打在放置于中心线上的荧光屏EF上。
求(静电力常数k=9×109N·m2/C2)
(1)粒子穿过界面PS时偏离中心线RO的距离多远
(2)点电荷的电量。
!
二、磁场
1、(19分)如图所示,在直角坐标系的第—、四象限内有垂直于纸面的匀强磁场,第二、三象限内沿x轴正方向的匀强电场,电场强度大小为E,y轴为磁场和电场的理想边界。
一个质量为m,电荷量为e的质子经过x轴上A点时速度大小为vo,速度方向与x轴负方向夹角θ=300。
质子第一次到达y轴时速度方向与y轴垂直,第三次到达y轴的位置用B点表示,图中未画出。
已知OA=L。
(1)求磁感应强度大小和方向;
(2)"
(3)
求质子从A点运动至B点时间
15.(20分)如图10所示,abcd是一个正方形的盒子,在cd边的中点有一小孔e,盒子中存在着沿ad方向的匀强电场,场强大小为E。
一粒子源不断地从a处
%
的小孔沿ab方向向盒内发射相同的带电粒子,粒子的初速度为v0,经电场作用后恰好从e处的小孔射出。
现撤去电场,在盒子中加一方向垂直于纸面的匀强磁场,磁感应强度大小为B(图中未画出),粒子仍恰好从e孔射出。
(带电粒子的重力和粒子之间的相互作用力均可忽略)
(1)所加磁场的方向如何
(2)电场强度E与磁感应强度B的比值为多大
(
2、(20分)在图示区域中,χ轴上方有一匀强磁场,磁感应强度的方向垂直纸面向里,大小为
B,今有一质子以速度v0由Y轴上的A点沿Y轴正方向射人磁场,质子在磁场中运动一段
时间以后从C点进入χ轴下方的匀强电场区域中,在C点速度方向与χ轴正方向夹角为
450,该匀强电场的强度大小为E,方向与Y轴夹角为450且斜向左上方,已知质子的质量为
m,电量为q,不计质子的重力,(磁场区域和电场区域足够大)求:
(1)C点的坐标。
(2)质子从A点出发到第三次穿越χ轴时的运动时间。
(3)质子第四次穿越χ轴时速度的大小及速度方向与电场E方向的夹角。
(角度用反三角
函数表示)
<
47、地球周围存在磁场,由太空射来的带电粒子在此磁场的运动称为磁漂移,以下是描述的一种假设的磁漂移运动,一带正电的粒子(质量为m,带电量为q)在x=0,y=0处沿y方向以某一速度v0运动,空间存在垂直于图中向外的匀强磁场,在y>0的区域中,磁感应强度为B1,在y<0的区域中,磁感应强度为B2,B2>B2,如图所示,若把粒子出发点x=0处作为第0次过x轴。
求:
(1)粒子第一次过x轴时的坐标和所经历的时间。
-
(2)粒子第n次过x轴时的坐标和所经历的时间。
(3)第0次过z轴至第n次过x轴的整个过程中,在x轴方向的平均速度v与v0之比。
(4)若B2:
B1=2,当n很大时,v:
v0趋于何值
3、(20分)如图所示,xOy平面内的圆O′与y轴相切于坐标原点O。
在该圆形区域内,有与y轴平行的匀强电场和垂直于圆面的匀强磁场。
一个带电粒子(不计重力)从原点O沿x轴进入场区,恰好做匀速直线运动,穿过圆形区域的时间为T0。
若撤去磁场,只保留电场,其他条件不变,该带电粒子穿过圆形区域的时间为
;若撤去电场,只保留磁场,其他条件不变,求该带电粒子穿过圆形区域的时间。
@
15.(13分)如图甲所示,一质量为m、电荷量为q的正离子,在D处沿图示方向以一定的速度射入磁感应强度为B的匀强磁场中,此磁场方向垂直纸面向里.结果离子正好从距A点为d的小孔C沿垂直于电场方向进入匀强电场,此电场方向与AC平行且向上,最后离子打在G处,而G处到A点的距离为2d(直线DAG与电场方向垂直).不计离子重力,离子运动轨迹在纸面内.求:
甲
!
(1)正离子从D处运动到G处所需时间.
(2)正离子到达G处时的动能.
1(20分)如图12所示,PR是一块长为L=4m的绝缘平板固定在水平地面上,整个空间有一个平行于PR的匀强电场E,在板的右半部分有一个垂直于纸面向外的匀强磁场B,一个质量为m=0.1kg,带电量为q=0.5C的物体,从板的P端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。
当物体碰到板R端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C点,PC=L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s2,求:
(1)判断物体带电性质,正电荷还是负电荷
(2)物体与挡板碰撞前后的速度v1和v2
(3)磁感应强度B的大小
—
(4)电场强度E的大小和方向
三、电磁感应
1、(19分)如图所示,一根电阻为R=12Ω的电阻丝做成一个半径为r=1m的圆形导线框,竖直放置在水平匀强磁场中,线框平面与磁场方向垂直,磁感强度为B=,现有一根质量为m=0.1kg、电阻不计的导体棒,自圆形线框最高点静止起沿线框下落,在下落过程中始终与线框良好接触,已知下落距离为r/2时,棒的速度大小为v1=
m/s,下落到经过圆心时棒的速度大小为v2=
m/s,(取g=10m/s2)
试求:
⑴下落距离为r/2时棒的加速度,
⑵从开始下落到经过圆心的过程中线框中产生的热量.
~
14.(12分)如图甲所示,倾角为θ、足够长的两光滑金属导轨位于同一倾斜的平面内,导轨间距为l,与电阻R1、R2及电容器相连,电阻R1、R2的阻值均为R,电容器的电容为C,空间存在方向垂直斜面向上的匀强磁场,磁感应强度为B.一个质量为m、阻值也为R、长度为l的导体棒MN垂直于导轨放置,将其由静止释放,下滑距离s时导体棒达到最大速度,这一过程中整个回路产生的焦耳热为Q,则:
(1)导体棒稳定下滑的最大速度为多少
(2)导体棒从释放开始到稳定下滑的过程中流过R1的电荷量为多少
)
甲
45.、有人设想用题如图所示的装置来选择密度相同、大小不同的球状纳米粒子。
粒子在电离室中电离后带正电,电量与其表面积成正比。
电离后,粒子缓慢通过小孔O1进入极板间电压为U的水平加速电场区域I,再通过小孔O2射入相互正交的恒定匀强电场、磁场区域II,其中磁场的磁感应强度大小为B,方向如图。
收集室的小孔O3与O1、O2在同一条水平线上。
半径为r0的粒子,其质量为m0、电量为q0,刚好能沿O1O3直线射入收集室。
不计纳米粒子重力。
(
)
(1)试求图中区域II的电场强度;
(2)试求半径为r的粒子通过O2时的速率;
(3)讨论半径r≠r0的粒子刚进入区域II时向哪个极板偏转。
【
42(18分)如图1所示,真空中相距
的两块平行金属板A、B与电源连接(图中未画出),其中B板接地(电势为零),A板电势变化的规律如图2所示将一个质量
,电量
的带电粒子从紧临B板处释放,不计重力。
求
(1)在
时刻释放该带电粒子,释放瞬间粒子加速度的大小;
(2)若A板电势变化周期
s,在
时将带电粒子从紧临B板处无初速释放,粒子到达A板时速度的大小;
(3)A板电势变化频率多大时,在
到
时间内从紧临B板处无初速释放该带电粒子,粒子不能到达A板。
#
8如图(甲)所示,两水平放置的平行金属板C、D相距很近,上面分别开有小孔O和O',水平放置的平行金属导轨P、Q与金属板C、D接触良好,且导轨垂直放在磁感强度为B1=10T的匀强磁场中,导轨间距L=0.50m,金属棒AB紧贴着导轨沿平行导轨方向在磁场中做往复运动,其速度图象如图(乙),若规定向右运动速度方向为正方向.从t=0时刻开始,由C板小孔O处连续不断地以垂直于C板方向飘入质量为m=×10-21kg、电量q=×10-19C的带正电的粒子(设飘入速度很小,可视为零).在D板外侧有以MN为边界的匀强磁场B2=10T,MN与D相距d=10cm,B1和B2方向如图所示(粒子重力及其相互作用不计),求
(
(1)0到内哪些时刻从O处飘入的粒子能穿过电场并飞出磁场边界MN
(2)粒子从边界MN射出来的位置之间最大的距离为多少
;
40、(19分)如图所示,在xoy坐标平面的第一象限内有沿-y方向的匀强电场,在第四象限内有垂直于平面向外的匀强磁场。
现有一质量为m,带电量为+q的粒子(重力不计)以初速度v0沿-x方向从坐标为(3l、l)的P点开始运动,接着进入磁场,最后由坐标原点射出,射出时速度方向与y轴方间夹角为45º,求:
(1)粒子从O点射出时的速度v和电场强度E;
(2)粒子从P点运动到O点过程所用的时间。
'
39、(16分)如图所示,匀强电场区域和匀强磁场区域是紧邻的,且宽度相等均为d,电场方向在纸平面内,而磁场方向垂直纸面向里.一带正电粒子从O点以速度v0沿垂直电场方向进入电场,在电场力的作用下发生偏转,从A点离开电场进入磁场,离开电场时带电粒子在电场方向的位移为电场宽度的一半,当粒子从C点穿出磁场时速度方向与进入电场O点时的速度方向一致,(带电粒子重力不计)求:
(l)粒子从C点穿出磁场时的速度v;
(2)电场强度E和磁感应强度B的比值E/B;
(3)拉子在电、磁场中运动的总时间。
36、磁悬浮列车动力原理如下图所示,在水平地面上放有两根平行直导轨,轨间存在着等距离的正方形匀强磁场Bl和B2,方向相反,B1=B2=lT,如下图所示。
导轨上放有金属框abcd,金属框电阻R=2Ω,导轨间距L=0.4m,当磁场Bl、B2同时以v=5m/s的速度向右匀速运动时,求
、
(1)如果导轨和金属框均很光滑,金属框对地是否运动若不运动,请说明理由;如运动,原因是什么运动性质如何
(2)如果金属框运动中所受到的阻力恒为其对地速度的K倍,K=,求金属框所能达到的最大速度vm是多少
(3)如果金属框要维持
(2)中最大速度运动,它每秒钟要消耗多少磁场能
…
25.(20分)空间存在着以x=0平面为分界面的两个匀强磁场,左右两边磁场的磁感应强度分别为B1和B2,且B1:
B2=4:
3,方向如图所示。
现在原点O处一静止的中性原子,突然分裂成两个带电粒子a和b,已知a带正电荷,分裂时初速度方向为沿x轴正方向,若a粒子在第四次经过y轴时,恰好与b粒子第一次相遇。
求:
(1)a粒子在磁场B1中作圆周运动的半径与b粒子在磁场B2中圆周运动的半径之比。
(2)a粒子和b粒子的质量之比。
!
24、(20分)如图11所示,在真空区域内,有宽度为L的匀强磁场,磁感应强度为B,磁场方向垂直纸面向里,MN、PQ是磁场的边界。
质量为m,带电量为-q的粒子,先后两次沿着与MN夹角为θ(0<θ<90º)的方向垂直磁感线射入匀强磁场B中,第一次,粒子是经电压U1加速后射入磁场,粒子刚好没能从PQ边界射出磁场。
第二次粒子是经电压U2加速后射入磁场,粒子则刚好垂直PQ射出磁场。
不计重力的影响,粒子加速前速度认为是零,求:
(1)为使粒子经电压U2加速射入磁场后沿直线运动,直至射出PQ边界,可在磁场区域加一匀强电场,求该电场的场强大小和方向。
(2)加速电压
的值。
@
22(12分)如图所示的坐标系,x轴沿水平方向,y轴沿竖直方向。
在x轴上方空间的第一、第二象限内,既无电场也无磁场,在第三象限,存在沿y轴正方向的匀强电场和垂直xy平面(纸面)向里的匀强磁场。
在第四象限,存在沿y轴负方向,场强大小与第三象限电场场强相等的匀强电场。
一质量为m、电量为q的带电质点,从y轴上y=h处的p
点以一定的水平初速度沿x轴负方向进入第二象限。
然后经过x轴上x=-2h处的p
点进入第三象限,带电质点恰好能做匀速圆周运动。
之后经过y轴上y=-2h处的p
点进入第四象限。
已知重力加速度为g。
求:
(1)粒子到达p
点时速度的大小和方向;
(2)第三象限空间中电场强度和磁感应强度的大小;
(3)带电质点在第四象限空间运动过程中最小速度的大小和方向。
<
21.(12分)如图,在竖直面内有两平行金属导轨AB、CD。
导轨间距为L,电阻不计。
一根电阻不计的金属棒ab可在导轨上无摩擦地滑动。
棒与导轨垂直,并接触良好。
导轨之间有垂直纸面向外的匀强磁场,磁感强度为B。
导轨右边与电路连接。
电路中的三个定值电阻阻值分别为2R、R和R。
在BD间接有一水平放置的平行板电容器C,板间距离为d。
(1)当ab以速度v0匀速向左运动时,电容器中质量为m的带电微粒恰好静止。
试判断微粒的带电性质,及带电量的大小。
(2)ab棒由静止开始,以恒定的加速度a向左运动。
讨论电容器中带电微粒的加速度如何变化。
(设带电微粒始终未与极板接触。
)
》
17、(8分)如图所示,为某一装置的俯视图,PQ、MN为竖直放置的很长的平行金属板,两板间有匀强磁场,其大小为B,方向竖直向下.金属棒AB搁置在两板上缘,并与两板垂直良好接触.现有质量为m,带电量大小为q,其重力不计的粒子,以初速v0水平射入两板间,问:
(1)金属棒AB应朝什么方向,以多大速度运动,可以使带电粒子做匀速运动
(2)若金属棒的运动突然停止,带电粒子在磁场中继续运动,从这刻开始位移第一次达到mv0/qB时的时间间隔是多少(磁场足够大)
14(18分)如图10所示,空间分布着有理想边界的匀强电场和匀强磁场,左侧匀强电场的场强大小为E、方向水平向右,其宽度为L;中间区域匀强磁场的磁感应强度大小为B、方向垂直纸面向外;右侧匀强磁场的磁感应强度大小也为B、方向垂直纸面向里。
一个带正电的粒子(质量m,电量q,不计重力)从电场左边缘a点由静止开始运动,穿过中间磁场区域进入右侧磁场区域后,又回到了a点,然后重复上述运动过程。
(图中虚线为电场与磁场、相反方向磁场间的分界面,并不表示有什么障碍物)。
(1)中间磁场区域的宽度d为多大;
(2)带电粒子在两个磁场区域中的运动时间之比;
(3)带电粒子从a点开始运动到第一次回到a点时所用的时间t.