杨氏模量实验报告汇总.docx
《杨氏模量实验报告汇总.docx》由会员分享,可在线阅读,更多相关《杨氏模量实验报告汇总.docx(8页珍藏版)》请在冰豆网上搜索。
杨氏模量实验报告汇总
南昌大学物理实验报告
课程名称:
大学物理实验
实验名称:
金属丝杨氏模量的测定
学院:
食品学院专业班级:
食品科学与工程152班
学生姓名:
彭超学号:
5603115045
实验地点:
基础实验大楼B106座位号:
实验时间:
第四周星期二下午十六点开始
1.学会测量杨氏模量的一种方法,掌握“光杠杆镜”测量微小长度变化的原理一、实验目的:
2.学会用“对称测量”消除系统误差3.学习如何依实际情况对各个测量进行误差估算4.练习用逐差法、作图法处理数据
二、实验原理:
在外力作用下,固体材料所发生的形状变化称之为形变。
形变分为弹性形变和范性形变。
如果加在物体上的外力停止作用后,物体能完全恢复原状的形变称之为弹性形变;如果加在物体上的外力停止作用后,物体不能完全恢复原状的形变称之为范性形变。
在许多种不同的形变中,伸长(或缩短)形变是最简单、最普遍的形变之一。
本实验是针对连续、SL或,横截面积为(,两端受拉力均匀、各向同性的材料做成的丝,进行拉伸试验。
设细丝的原长为L?
FF称称为应变,单位横截面积所承受的力(或缩短)压力)。
而单位长度的伸长量后,物体伸长L?
SL为应力。
根据胡克定律,在弹性限度内,应力与应变成正比关系,即L?
FE?
LS0LEF、物体的长度式中比例系数称为杨氏弹性模量,简称杨氏模量。
实验证明,杨氏模量与外力S的大小无关,而只决定于物体的材料。
杨氏模量是表征固体材料性质的一个重要物理量,和截面积是选定机械构件材料的依据之一。
由上式得FL0?
ELS?
2-E的单位为(SI)中,在国际单位制m?
N只取决于被测物的材料特性,的大小无关,物体长度L和横截面积S实验证明,杨氏模量与外力F、它是表征固体性质的一个物理量d设金属丝的直径为,则12?
dS?
4FL4?
E2?
L?
dm0.3相应的≈1m时,LF每变化1kg约为,当是一个微小长度变化(在此实验中而L?
?
Lm)。
因此,本实验利用光杠杆的光学放大作用实现对钢丝微小伸长量的间接测量。
L?
为光杠杆是反射镜,b上图是光杠杆镜测微小长度变化量的原理图。
左侧曲尺状物为光杠杆镜,Mb边的另一端则随被测钢丝的伸长、缩为光杆杆平面镜到尺的距离,当加减砝码时,镜短臂的杆长,D时,从一个调节好的位于图右侧的M镜法线的方向,使得钢丝原长为短而下降、上升,从而改变了L0;而钢丝受力伸长后,光杠杆镜的位置变为虚线所示,此时从望远镜中标尺像的读数为望远镜看Mn1,对应光杠杆镜的角度变化量,而对应。
这样,钢丝的微小伸长量镜上看到的标尺像的读数变为nL?
2?
。
从图中用几。
由光路可逆可以得知,A对光杠杆镜的张角应为的光杠杆镜中标尺读数变化则为2n?
何方法可以得出:
L?
?
?
?
tan?
bn-nn?
21?
?
?
?
22?
tanDD将两式联立后得bn?
?
L?
D2nn-?
n?
式中D的位移,相当于光杠杆镜的长臂端21D2,从而获得了对微小量的线性放大,提叫做光杠杆的放大倍数,由于,所以bD?
?
L?
?
n?
?
b高了的测量精度L?
这种测量方法被称为放大法。
由于该方法具有性能稳定、精度高,而且是线性放大等优点,所以在设计各类测试仪器中有着广泛的应用考虑到金属丝受外力作用时存在着弹性滞后效应,也就是说钢丝受到拉伸力作用时,并不能立即?
)L?
?
(LL?
LL?
L当钢丝受到的拉伸力一旦减小时,也,而只能伸长到,。
同样伸长到应有的长度iii0ii?
LL?
L。
因此实验时测出的并不是金属丝应有的伸长或收缩不能马上缩短到应有的长度,仅缩短到iii的实际长度。
为了消除弹性滞后效应引起的系统误差,测量中应包括增加拉伸力以及对应地减少拉伸力这一对称测量过程,实验中可以采用增加和减少砝码的办法实现。
只要在增、减相应重量时,金属?
L丝伸缩量取平均,就可以消除滞后量的影响。
即i1?
?
?
?
?
?
?
?
?
LLL?
?
L?
?
L?
?
-?
?
LLLL?
i0ii0iii02
三、杨氏模量仪测量仪;螺旋测微器;游标尺;钢卷尺和米尺;望远镜(附标尺)。
实验仪器:
)调节测定仪支架螺丝,使支架竖直,使夹头刚好穿过平台上的圆孔而不会与平台发生摩擦
(1)将杠杆后尖脚置于夹头上,两尖脚置于平台凹槽上
(2)调节光杠杆与望远镜、米尺中部在同一高度上(3)调节望远镜的位置或光杠杆镜面仰角,直至眼睛在望远镜目镜附近能直接(不通过望远镜筒)从4(光杠杆镜面中观察到标尺中部的像)细微调节望远镜方位和仰角调节螺丝,直至望远镜上缺口与准星连线粗略对准光杠杆镜面(5(6)调节望远镜目镜调焦旋钮,直至在望远镜中能看清叉丝。
)调节望远镜的物镜调焦旋钮直至在望远镜中能看清整个镜面。
(如果只能看到部分镜面,应调节7(望远镜仰角调节螺丝,直至看到整个镜面)。
8)继续调节望远镜的物镜调焦旋钮,直至在望远镜中能看清标尺中部读数。
()如果只有部分标尺清楚,说明只有部分标尺聚焦,应调节望远镜仰角调节螺丝直至视野中标尺读(9数完全清楚。
四、实验内容和步骤:
个底脚螺丝,同时观察砝码挂在钢丝下端钢丝拉直,调节杨氏模量仪底盘下面的32kg
(1)用放在平台上的水准尺,直至中间平台处于水平状态为止。
)调节光杠杆镜位置。
将光杆镜放在平台上,两前脚放在平台横槽内,后脚放在固定钢丝下(2端圆柱形套管上(注意一定要放在金属套管的边上,不能放在缺口的位置),并使光杠杆镜镜面基本所示。
垂直或稍有俯角,如图6-1左右处,松开望远镜固定螺钉,上下移动使得望远2m(3)望远镜调节。
将望远镜置于距光杆镜移动望远镜固定架位置,从望远镜筒上方沿镜筒轴线瞄准光杠杆镜面,镜和光杠杆镜的镜面基本等高。
直至可以看到光杠杆镜中标尺的像。
然后再从目镜观察,先调节目镜使十字叉丝清晰,最后缓缓旋转调焦手轮,使物镜在镜筒内伸缩,直至从望远镜里可以看到清晰的标尺刻度为止。
n砝,然后每加上1kg砝码时的读数作为开始拉伸的基数(4)观测伸长变化。
以钢丝下挂2kg0n,n,n,n,n,n,n,n这是钢丝拉伸过程中的读数变,这样依次可以得到码,读取一次数据,76543210''''''''nnnnnnnn砝码,读取一次数据,依次得到1kg化。
紧接着再每次撤掉,这是钢丝收缩过程中50671342的读数变化。
注意:
加、减砝码时,应轻放轻拿,避免钢丝产生较大幅度振动。
加(或减)砝码后,钢丝会有
一个伸缩的微振动,要等钢丝渐趋平稳后再读数。
b用尺画出两前脚的连测量光杠杆镜前后脚距离把光杠杆镜的三只脚在白纸上压出凹痕,。
(5)的小钢尺测量行否?
有效位数1.0mm线,再用游标卡尺量出后脚到该连线的垂直距离(用最小分度为够吗?
)。
次,取其平均值。
测量时每次都要3~5(6)测量钢丝直径。
用螺旋测微计在钢丝的不同部位测注意记下数据,螺旋测微计的零位误差。
D用钢卷尺量出光杠杆镜镜面到望远镜附标尺的)测量光杠杆镜镜面到望远镜附标尺的距离。
(7长的范围内因中间下垂引起的误2m距离,作单次测量,并估计误差(卷尺从空中直接拉直测量,在差。
从镜面到标尺,这两头各应从何算起?
能对准吗?
如何估算上述误差?
)。
L,测单次(测量的起讫点各在哪里?
能用米尺直接比较测量吗?
若8)用米尺测量钢丝原长0(不能,如何估算误差?
你想到误差界这个概念了吗?
)。
(9)实验中的注意事项:
①钢丝的两端一定要夹紧,一来减小系统误差,二来避免砝码加重后拉脱而砸坏实验装置。
②在测读伸长变化的整个过程中,不能碰动望远镜及其安放的桌子,否则重新开始测读。
③被测钢丝一定要保持平直,以免将钢丝拉直的过程误测为伸长量,导致测量结果谬误。
④增减砝码时要注意砝码的质量是否都是1kg,并且不能碰到光杠杆镜。
⑤望远镜有一定的调焦范围,不能过分用力拧动调焦旋钮。
五、实验数据与处理:
03.?
4n0n?
n62.n?
40476?
0.14355.n?
nn?
21581.?
058.n?
5nn-'n?
n4?
?
ji3ii?
?
)n(cmcm?
n?
0.76?
cmncm?
?
0.05;;:
平均值;:
n?
ji-2nn?
915.n?
26710.?
44636.n?
5nn?
37(舍).61?
010.?
n74636.n?
7776..000b74?
m?
10?
?
1.57?
?
n?
?
L10010169.2D2?
mm510.d?
2510.1?
?
2?
7?
m102.04S?
?
?
?
?
10004?
?
FL?
?
2110m.87?
10?
E?
N1?
L?
S222222?
b?
?
?
F?
LD?
d?
?
?
?
?
?
?
?
?
?
?
?
10n?
)?
?
?
?
?
?
E?
?
?
?
E1.2310N(?
m?
?
?
?
?
?
?
?
?
?
?
?
nbdD?
LF?
?
?
?
?
?
?
?
?
?
?
?
11)N(?
m)?
(?
1.870.12?
10E
六、误差分析:
七、思考题:
八、附上原始数据: