循环流化床技术.docx

上传人:b****8 文档编号:28088533 上传时间:2023-07-08 格式:DOCX 页数:53 大小:420.17KB
下载 相关 举报
循环流化床技术.docx_第1页
第1页 / 共53页
循环流化床技术.docx_第2页
第2页 / 共53页
循环流化床技术.docx_第3页
第3页 / 共53页
循环流化床技术.docx_第4页
第4页 / 共53页
循环流化床技术.docx_第5页
第5页 / 共53页
点击查看更多>>
下载资源
资源描述

循环流化床技术.docx

《循环流化床技术.docx》由会员分享,可在线阅读,更多相关《循环流化床技术.docx(53页珍藏版)》请在冰豆网上搜索。

循环流化床技术.docx

循环流化床技术

循环流化床燃烧技术

循环流化床燃烧(CFBC)技术系指小颗粒的煤与空气在炉膛内处于沸腾状态下,即高速气流与所携带的稠密悬浮煤颗粒充分接触燃烧的技术。

循环流化床锅炉脱硫是一种炉内燃烧脱硫工艺,以石灰石为脱硫吸收剂,燃煤和石灰石自锅炉燃烧室下部送入,一次风从布风板下部送入,二次风从燃烧室中部送入。

石灰石受热分解为氧化钙和二氧化碳。

气流使燃煤、石灰颗粒在燃烧室内强烈扰动形成流化床,燃煤烟气中的SO2与氧化钙接触发生化学反应被脱除。

为了提高吸收剂的利用率,将未反应的氧化钙、脱硫产物及飞灰送回燃烧室参与循环利用。

钙硫比达到2~2.5左右时,脱硫率可达90%以上。

流化床燃烧方式的特点是:

1.清洁燃烧,脱硫率可达80%~95%,NOx排放可减少50%;2.燃料适应性强,特别适合中、低硫煤;3.燃烧效率高,可达95%~99%;4.负荷适应性好。

负荷调节范围30%~100%。

循环流化床锅炉主要由燃烧系统、气固分离循环系统、对流烟道三部分组成。

其中燃烧系统包括风室、布风板、燃烧室、炉膛、给煤系统等几部分;气固分离循环系统包括物料分离装置和返料装置两部分;对流烟道包括过热器、省煤器、空气预热器等几部分。

循环流化床锅炉属低温燃烧。

燃料由炉前给煤系统送入炉膛,送风一般设有一次风和二次风,有的生产厂加设三次风,一次风由布风板下部送入燃烧室,主要保证料层流化;二次风沿燃烧室高度分级多点送入,主要是增加燃烧室的氧量保证燃料燃烬;三次风进一步强化燃烧。

燃烧室内的物料在一定的流化风速作用下,发生剧烈扰动,部分固体颗料在高速气流的携带下离开燃烧室进入炉膛,其中较大颗料因重力作用沿炉膛内壁向下流动,一些较小颗料随烟气飞出炉膛进入物料分离装置,炉膛内形成气固两相流,进入分离装置的烟气经过固气分离,被分离下来的颗料沿分离装置下部的返料装置送回到燃烧室,经过分离的烟气通过对流烟道内的受热面吸热后,离开锅炉。

因为循环流化床锅炉设有高效率的分离装置,被分离下来的颗料经过返料器又被送回炉膛,使锅炉炉膛内有足够高的灰浓度,因此循环流化床锅炉不同于常规锅炉炉膛仅有的辐射传热方式,而且还有对流及热传等传热方式,大大提高了炉膛的传导热系数,确保锅炉达到额定出力。

 

循环流化床锅炉概述

循环流化床锅炉是一种高效、低污染的节能产品。

自问世以来,在国内外得到了迅速的推广与发展。

但由于循环流化床锅炉自身的特点,在运行操作时不同于层燃炉和煤粉炉,如果运行中不能满足其对热工参数的特殊要求,极易酿成事故。

而目前有关循环流化床锅炉操作运行方面的资料还较少,笔者根据几年来锅炉设计及现场调试的经验,对循环流化床锅炉运行参数的控制与调整作了一下简述,希望能对锅炉运行人员有所启发。

1循环流化床锅炉总体结构

循环流化床锅炉主要由燃烧系统、气固分离循环系统、对流烟道三部分组成。

其中燃烧系统包括风室、布风板、燃烧室、炉膛、给煤系统等几部分;气固分离循环系统包括物料分离装置和返料装置两部分;对流烟道包括过热器、省煤器、空气预热器等几部分。

2循环流化床锅炉燃烧及传热特性

   循环流化床锅炉属低温燃烧。

燃料由炉前给煤系统送入炉膛,送风一般设有一次风和二次风,有的生产厂加设三次风,一次风由布风板下部送入燃烧室,主要保证料层流化;二次风沿燃烧室高度分级多点送入,主要是增加燃烧室的氧量保证燃料燃烬;三次风进一步强化燃烧。

燃烧室内的物料在一定的流化风速作用下,发生剧烈扰动,部分固体颗料在高速气流的携带下离开燃烧室进入炉膛,其中较大颗料因重力作用沿炉膛内壁向下流动,一些较小颗料随烟气飞出炉膛进入物料分离装置,炉膛内形成气固两相流,进入分离装置的烟气经过固气分离,被分离下来的颗料沿分离装置下部的返料装置送回到燃烧室,经过分离的烟气通过对流烟道内的受热面吸热后,离开锅炉。

因为循环流化床锅炉设有高效率的分离装置,被分离下来的颗料经过返料器又被送回炉膛,使锅炉炉膛内有足够高的灰浓度,因此循环流化床锅炉不同于常规锅炉炉膛仅有的辐射传热方式,而且还有对流及热传等传热方式,大大提高了炉膛的传导热系数,确保锅炉达到额定出力。

3循环流化床锅炉主要热工参数的控制与调整

3.1料层温度

   料层温度是指燃烧密相区内流化物料的温度。

它是一个关系到锅炉安全稳定运行的关键参数。

料层温度的测定一般采用不锈钢套管热电偶作一次元件,布置在距布风板200-500mm左右燃烧室密相层中,插入炉墙深度15-25mm,数量不得少于2只。

在运行过程中要加强对料层温度监视,一般将料层温度控制在850℃-950℃之间,温度过高,容易使流化床体结焦造成停炉事故;温度太低易发生低温结焦及灭火。

必须严格控制料层温度最高不能超过970℃,最低不应低于800℃。

在锅炉运行中,当料层温度发生变化时,可通过调节给煤量、一次风量及送回燃烧室的返料量,调整料层温度在控制范围之内。

如料层温度超过970℃时,应适当减少给煤量、相应增加一次风量并减少返料量,使料层温度降低;如料层温度低于800℃时,应首先检查是否有断煤现象,并适当增加给煤量,减少一次风量,加大返料量,使料层温度升高。

一但料层温度低于700℃,应做压火处理,需待查明温度降低原因并排除后再启动。

3.2返料温度

   返料温度是指通过返料器送回到燃烧室中的循环灰的温度,它可以起到调节料层温度的作用。

对于采用高温分离器的循环流化床锅炉,其返料温度较高,一般控制返料温度高出料层温度20-30℃,可以保证锅炉稳定燃烧,同时起到调整燃烧的作用。

在锅炉运行中必须密切监视返料温度,温度过高有可能造成返料器内结焦,特别是在燃用较难燃的无烟煤时,因为存在燃料后燃的情况,温度控制不好极易发生结焦,运行时应控制返料温度最高不能超过1000℃。

返料温度可以通过调整给煤量和返料风量来调节,如温度过高,可适当减少给煤量并加大返料风量,同时检查返料器有无堵塞,及时清除,保证返料器的通畅。

3.3料层差压

   料层差压是一个反映燃烧室料层厚度的参数。

通常将所测得的风室与燃烧室上界面之间的压力差值作为料层差压的监测数值,在运行都是通过监视料层差压值来得到料层厚度大小的。

料层厚度越大,测得的差压值亦越高。

在锅炉运行中,料层厚度大小会直接影响锅炉的流化质量,如料层厚度过大,有可能引起流化不好造成炉膛结焦或灭火。

一般来说,料层差压应控制在7000-9000Pa之间。

料层的厚度(即料层差压)可以通过炉底放渣管排放底料的方法来调节。

用户在使用过程中,应根据所燃用煤种设定一个料层差压的上限和下限作为排放底料开始和终止的基准点。

3.4炉膛差压

   炉膛差压是一个反映炉膛内固体物料浓度的参数。

通常将所测得的燃烧室上界面与炉膛出口之间的压力差作为炉膛差压的监测数值。

炉膛差压值越大,说明炉膛内的物料浓度越高,炉膛的传热系数越大,则锅炉负荷可以带得越高,因此在锅炉运行中应根据所带负荷的要求,来调节炉膛差压。

而炉膛差压则通过锅炉分离装置下的放灰管排放的循环灰量的多少来控制,一般炉膛差压控制在500-2000Pa之间。

用户根据燃用煤种的灰份和粒度设定一个炉膛差压的上限和下限作为开始和终止循环物料排放的基准点。

   此外,炉膛差压还是监视返料器是否正常工作的一个参数。

在锅炉运行中,如果物料循环停止,则炉膛差压会突然降低,因此在运行中需要特别注意。

 

4需要特别说明的几个问题

4.1返料量

   控制返料量是循环流化床锅炉运行操作时不同于常规锅炉之处,根据前面提到的循环流化床锅炉燃烧及传热的特性,返料量对循环流化床锅炉的燃烧起着举足轻重的作用,因为在炉膛里,返料灰实质上是一种热载体,它将燃烧室里的热量带到炉膛上部,使炉膛内的温度场分布均匀,并通过多种传热方式与水冷壁进行换热,因此有较高的传热系数,(其传热效率约为煤粉炉的4-6倍)通过调整返料量可以控制料层温度和炉膛差压并进一步调节锅炉负荷。

   另一方面,返料量的多少与锅炉分离装置的分离效率有着直接的关系,也就是说,分离器的分离效率越高,分离出的烟气中的灰量就越大,从而锅炉对负荷的调节富裕量就越大,操作运行相对就容易一些。

4.2风量的调整

   在锅炉运行过程中,许多用户往往只靠风门开度的大小来调节风量,但对于循环流化床锅炉来说,其对风量的控制就要求比较准确。

   对风量的调整原则是在一次风量满足流化的前提下,相应地调整二次风和三次风量。

因为一次风量的大小直接关系到流化质量的好坏,循环流化床锅炉在运行前都要进行冷态试验,并作出在不同料层厚度(料层差压)下的临界流化风量曲线,在运行时以此作为风量调整的下限,如果风量低于此值,料层就可能流化不好,时间稍长就会发生结焦。

对二次风量的调整主要是依据烟气中的含氧量多少,通常以过热器后的氧量为准,一般控制在3-5%左右,如含氧量过高,说明风量过大,会增加锅炉的排烟热损失q2;如过小又会引起燃烧不完全,增加化学不完全燃烧损失q3和机械不完全燃烧损失q4。

如果在运行中总风量不够,应逐渐加大鼓引风量,满足燃烧要求,并不断调节一二三次风量,使锅炉达到最佳的经济运行指标。

循环流化床锅炉基本讲述

循环流化床锅炉技术是近几十年来迅速发展起来的一项高效低污染清洁燃煤技术。

国际上这项技术在电站锅炉,工业锅炉和废弃物处理利用等领域已得到广泛的商业应用,并向几十万千瓦给规模的大型循环流化床锅炉发展。

国内在这方面的研究、开发和应用也是方兴未艾,已有上百台循环流化床锅炉投入运行或正在制造之中,可以预见,未来的几年将是循环流化床飞速发展的一个重要时期。

现根据我国近几年来出版的关于循环流化床锅炉理论设计与运行中有关循环流化床锅炉的原理、特点、启动和运行等方面的情况介绍如下:

一、循环流化床锅炉的工作原理:

(一)流态化过程:

当流体向上流动流过颗粒床层时,其运行状态是变化的。

流速较低时,颗粒静止不动,流体只在颗粒之间的缝隙中通过。

当流速增加到某一速度之后,颗粒不再由分布板所支持,而全部由流体的摩擦力所承托。

此时对于单个颗粒来讲,它不再依靠与其他邻近颗粒的接触面维持它的空间位置。

相反地,在失去了以前的机械支承后,每个颗粒可在床层中自由运动;就整个床层面言,具有了许多类似流体的性质。

这种状态就被称为流态化。

颗粒床层从静止状态转变为流态化时的最低速度,称为临界流化速度。

流化床类似流体的性质主要有以下几点

(1)在任一高度的静止近似于在此高度以上单位床截面内固体颗粒的重量。

(2)无论床层如何倾斜,床表面总是保持水平,床层的形状也保持容器的形状;

(3)床内固体颗粒可以像流体一样从底部或侧面的孔口中排出;

(4)密度高于床层表观察的物体化床内会下沉,密度小的物体会浮在床面上;

(5)床内颗粒混合良好,颗粒均匀分散于床层中,称之为“散式”流态化。

因此,当加热床层时,整个床层的温度基本均匀。

而一般的气、固体态化,气体并不均匀地流过颗粒床层。

一部分气体形成气泡经床层短路逸出,颗粒则被分成群体作湍流运动,床层中的空隙率随位置和时间的不同而变化,因此这种流态化称之为“聚式”流态化。

煤的燃烧过程是一个气、固流态化过程。

二、循环流化床的原理和特点:

循环流化床在不同气流速度下固体颗粒床层的流动状态也不同。

随着气流速度的增加,固体颗粒分别呈现固体床、鼓泡流化床、湍流流化床和气力输送状态。

循环流化床的上升阶段通常运行在快速流化床状态下,快速流化床流体动力特性的形成对循环流化床是至关重要的,此时,固体燃料被速度大于单颗燃料的终端速度的气流所流化,以颗粒团的形式上下运动,产生高度的返混。

颗粒团向各个方向运动,而且不断形成和解体,在这种流体状态下气流还可携带一定数量的大颗粒,尽管其终端速度远大于截平均气速。

这种气、固运行方式中,存在较大的气、固两相速度差,即相对速度,循环流化床由快速流化床(上升段)气、固燃料分离装置和固体燃料回送装置所组成。

循环流化床的特点可纳如下:

(1)不再有鼓泡流化床那样的界面,固体颗粒充满整个上升段空间。

(2)有强力的燃料返混,颗粒团不断形成和解体,并向各个方面运行。

(3)颗粒与气体之间的相对速度大,且与床层空隙率和颗粒循环流量有关。

(4)运行流化速度为鼓泡流化床的2-3倍。

(5)床层压降随流化速度和颗粒的质量流量而变化。

(6)颗粒横向混合良好。

(7)强烈的颗粒返混,颗粒的外部循环和良好的横向混合,使得整个上升段内温度分布均匀。

(8)通过改变上升段内的存料量,燃料在床内的停留时间可在几分钟到数子时范围内调节。

(9)流化气体的整体性状呈塞状流。

(10)流化气体根据需要可在反应器的不同高度加入。

三、流化床燃料设备的主要类型:

流化床操作起初主要用在化工领域,自60年代开始,流化床被用于煤的燃料,并且很快成为三种主要燃料方式之一,即固定床燃料(层燃),流化床燃料和悬浮燃烧(煤粉燃烧)流化床燃烧过程的理论和实践也大大推动了流态化学科的发展,目前流化床燃烧已成为流态化的主要应用领域之一,愈来愈得到人们的重视。

流化床燃烧设备按流体动力特性可分为鼓泡流化床锅炉,和循环流化床锅炉,按工作条件分又可分为常压和增压流化床锅炉,这样流化床燃烧锅炉可分为常压鼓泡流化床锅炉,常压循环流化床锅炉,增压鼓泡流化床锅炉和增压循环流化床锅炉正在工业示范阶段。

(四)循环流化床锅炉的特点:

(1)循环流化床锅炉的工作条件:

项目数值项目数值温度(℃)850-950床层压降KPa11-12流化速度(m/s)4-6炉内颗粒浓度kg/m3150-600炉膛底部床料粒度(μm)100-70010-40炉膛上部床料密度(kg/m3)1800-2600Ca/s摩尔比1.5-4燃料粒度(mm)<12壁面传210-250脱硫剂粒度(mm)1左右

(2)循环流化床锅炉的特点:

循环流化床锅炉可分为两个部份,第一部份由炉膛(块速流化床)气,固物料分离设备,固体物料再循环设备,(旋风份离器)等组成,上述部分形成了一个固体物料循环回路。

第二部份为对流烟道,布置有过热器,再热器,省煤器和空气予热器等。

典型循环流化床锅炉燃烧系统,燃烧所需的一、二次风分别从炉膛的底部和炉膛侧墙送入,燃料的燃烧主要在炉膛中完成,炉膛四周布置水冷壁,用于吸收燃料所产生的部分热量,由气流带出炉膛的固体物料在气、固体分离装置中被收集并通过返料装置返回炉膛再燃烧循环流化床燃烧锅炉的基本特点:

可概括以下:

1、低温的动力控制燃烧:

循环流化床燃烧是一种在炉内使高速运行的烟气与其所携带的湍流扰动极强的固体颗粒密切接触,并具有大量颗粒返混的流态化燃烧反应过程,同时,在炉外将绝大部分高温的固体颗粒捕集,将这部分颗粒送回炉内再次参予燃烧过程,反复循环地组织燃烧。

显然,燃料在炉膛内燃烧的时间延长了,在这种燃烧方式下,炉内温度水平因受脱硫最佳温度限制,一般850℃左右,这样的温度远低于普通煤粉炉中的温度水平(一般1300-1400℃),并低于一般煤的灰烤点(1200-1400℃),这就免去了灰熔化带来的种种烦恼。

这种低温燃烧方式好处较多,炉内结渣,及碱金属,析出均比煤粉炉中要改善很多,对灰特性的敏感性减低,也无须用很大空间去使高温灰冷却下来,氮氧化合物生成量低。

并可与炉内组织廉价而高效的脱硫工艺。

从燃烧反应动力学角度看,循环流化床锅炉内的燃烧反应控制在动力燃烧区(或过渡区)内。

由于循环流化床锅炉内相对来说燃烧温度不高,并有大量固体颗粒的强烈混合,这种状况下的燃烧速率主要取决于化学反应速率,也就决定于燃烧温度水平,面燃烧物理因素不再是控制燃烧速率的主导因素,循环流化床锅炉内燃料燃尽度很高,通常,性能良好的循环流化床锅炉燃烧率可达98-99%以上。

2、高速度、高浓度、高通量的固体物料流态化循环过程:

循环流化床锅炉内的固体物料(包括燃料残炭,脱硫剂和惰性床料等)经由炉膛,分离器和返料装置所组成的外循环。

同时,循环流化床锅炉内的物料参于炉内、外两种循环运行。

整个燃烧过程的及脱硫过程都是在这两种形式的循环运行的动态过程中逐步完成的。

3、高强度的热量、质量和运行传递过程:

在循环流化床锅炉中,大量的固体物料化强烈湍流下通过炉膛,通过人为操作可改变物料循环量,并可改变炉内物料的分布规律,以适应不同的燃烧工况,在这种组织方式下,炉内的热量、质量和动量传递是十分强烈的,这就使整个炉膛高度的温度分布均匀,实践也充分证实际这一点。

4、循环流化床锅炉与其它炉型相比较:

一般固体燃料的燃烧可分为:

层燃、流化床燃烧和紧浮燃烧,流化床燃烧又可分为鼓泡流化床和循环流化床燃烧。

为了解循环流化床锅炉的优点以及需要进一步研究解决的问题,有必要对循环流化床锅炉与其他炉型炉进行比较。

(1)燃烧过程的比较:

特征层燃炉循环流化床悬物燃烧炉燃料颗粒平均直径(mm)<3000.05-0.10.02-0.08燃料室区域风速(m/s)1-33-1215-30固体运行状态静止大部份向上,部分向下向上床层与受热面传热系数w.m2.k50-150100-25050-100磨损小中较小

(2)脱硫过程的比较:

煤粉炉的喷钙脱硫是将钙基脱硫剂(如石灰石、白方石或消石灰)直接喷入炉内,在高温下脱硫剂大段烧进行如瓜反应:

500℃-900℃CaCO3CaO(S)+CO2(g)500℃-900℃MgCO3·(OH2)CaO(S)+MgO(S)+2CO2(g)500℃-900℃Ca(OH2)Ca0(S)+H2O(g)1在通常燃烧温度下,燃烧过程在不到200ms的时间内就基本完成了(脱硫剂粒径为10μm左右),脱硫剂燃烧后形成多孔的氧化钙颗粒,一旦脱硫剂燃烧生成CaCO,它就和反应成硫酸钙2CaO(S)+SO2(g)+O2(g)CaSO4(S)据煤粉炉喷钙试验,最佳喷入温度为1100℃左右,石灰石料度在8-10μm之间脱硫效率较佳,脱硫剂的利用率一般为20%,脱硫效率为50%。

而循环硫化床锅炉的燃烧脱硫过程是将脱硫剂(石灰或白方石)送入炉内,然后与燃烧生成的二氧化硫气体反应,达到脱硫目的。

与煤粉炉一样,脱硫剂进入循环流化床锅炉后大段烧形成氧化钙,氧化钙再与二氧化硫气体反应。

在循环流化床锅炉中,由于独特的设计和运行条件,整个循环流化床锅炉的主循环回路运行在脱硫的最佳温度范围内(850-900℃)。

同时由于固体物料在炉内、外循环(通过分离装置和回送装置)脱硫剂在炉内的停留时间大大延长,通常平均停留时间可达数十分钟。

此外,炉内强烈的湍流混合也十分有利于循环流化床锅炉燃烧脱硫过程在Ca/S为1.5-2.5时,脱硫效率通常可达90%,脱硫剂利用率可达50%,将比煤粉脱硫效果提高一倍。

(3)各种形式锅炉主要技术经济指标的比较:

锅炉型号主要技术经济指标YG-35/39-M3循环流化床炉BG-35/39-M煤粉炉L-35/39-W/I链条炉锅炉实际热效率(%)87.887.9650燃料种类贫煤贫煤贫煤低位发热量(KJ/kg)217362200321736锅炉耗煤量(kg/h)495948838707锅炉耗标煤(kg/h)368436776468辅机耗电总容量(KW)470587.1362.3辅机耗电总容量折标煤(kg)100235145总耗标煤(kg/h)387242186613每吨汽耗标煤(kg)110.69109.25188.94燃烧效率(%)98-9998-9988.1负荷调节范围较大小大对煤种变化的适应性适应了较单一煤种单一煤种操作维护水平一般高简单锅炉设备费(本体)(万元)82.689786.59系统投资费(万元)245400200.7锅炉钢材耗量(吨)157165186二氧化硫排放量加石灰石可脱硫全部排放全部排放二氧化氮排放量生成少生成多生成较多飞灰排放量较大大小

注:

锅炉投资按90年代初估价循环硫化床锅炉与其他型式锅炉比较

锅炉特性链条炉煤粉炉循环硫化床炉床高或燃料燃烧区高度m0.215-4027-45截面风速m/s1.24-84-6过剩空气系数1.2-1.31.2-1.251.15-1.3截面热负荷MW/M20.5-1.53-54-6煤的粒度过mm6-326以下0.1以下负荷调节比4.13:

4.1燃烧效率%85-9095-9999NO2排放PPM400-60050-200400-600炉内脱硫效率低80-90从上表可看出:

循环硫化床锅炉明显优于其他型式的锅炉

五、循环硫化床锅炉的优点:

优点:

由于循环硫化床锅炉独特的流体动力特性和结构,使其具备有许多独特的优点,以下分别加的简述。

1、燃料适应性:

这是循环流化床锅炉主要特性优点之一。

在循环流化床锅炉中按重量计,燃料仅点床料的1%-3%,其它是不可燃的固体颗粒,如脱硫剂、灰渣或砂。

循环流化床锅炉的特殊流体动力特性使得气、固和固与固体燃料混合非常好,因此燃料进入炉膛后很快与大量床料混凝土合,燃料被此速加热至高于看火温度,而同时床层温度没有明显降低,只要燃料热值大于加热燃料本身和燃料所需的空气至着火温度所需的热量,循环流化床锅炉不需要辅助燃料而砂用任何原料。

循环流化床锅炉既可用优质煤,也可烧用各种劣质煤,如高灰分煤、高硫煤、高灰高硫煤、煤矸石、泥煤、以及油页岩、石油焦、炉渣树皮、废木料、垃圾等。

2、燃烧效率高:

循环流化床锅炉的燃烧效率要比链条炉高得可达97.5-99.5%,可与煤粉炉相媲美。

循环流化床锅炉燃烧效率高是因为下述特点:

气、固混合良好,燃烧速率高,特别是对粗粉燃料,绝大部分未燃尽的燃料被再循环至炉膛再燃烧,同时,循环流化床锅炉能在较宽的运行变化范围内保持较高的燃烧效率。

甚至燃用细粉含量高的燃料时也是如此。

3、高效脱硫:

循环流化床锅炉的脱硫比其它炉型更加有效,典型的循环流化床锅炉脱硫可达90%。

与燃烧过程不同,脱流反应进行得较为缓慢,为了使氧化钙(燃烧石灰石)充分转化为硫酸钙,烟气中的二氧化硫气体必须与脱硫剂有充分长的接触时间和尽可能大的反应面积。

当然,脱硫剂颗粒的内部并不能完全瓜,气体在燃烧区的平均停留时间为3-4秒钟,循环流化床锅炉中石灰石粒径通常为0.1-0.3mm,无论是脱硫剂的利用率还是二氧化硫的脱除率,循环流化床锅炉都比其他锅炉优越。

4、氮氧化物(NO2)排放低:

氮氧化物排放低是循环硫化床锅炉一个非常吸引人的一个特点。

运行经验表明,循环流化床锅炉的二氧化氮排放范围为50-150PPM或40-120mg/mJ。

NO2排放低的原因:

一是低温燃烧,此时空气中的氮一般不会生成NO2,二是分段燃烧,抑制燃料中的氮转化NO2,并使部分已生成NO2得到还原。

5、其他污染物排放低:

循环流化床锅炉的其他污染物如:

CO、HC1、HF等排放也很低。

6、燃烧强度高、炉膛截面积小炉膛单位截面积的热负荷高是循环流化床锅炉的主要优点之一。

循环流化床锅炉的截面热负荷约为3.5-4.5MW/m2接近或高于煤粉炉

7、给煤点少:

循环流化床锅炉因炉膛截面积较大,同时良好的混合和燃烧区域的扩展使所需的给煤点数大大减少,只需一个给煤点,也简化了给煤系统。

8、燃料预处理系统简单:

循环流化床锅炉的给煤粒度一般小于12mm,因此与煤粉炉相比,燃料的制粉系统相比大为简化。

此外,循环流化床锅炉能直接燃用高水分煤(水分可达30%以上)。

当燃用高水分煤时,也不需要专门的处理系统。

9、易于实现灰渣综合利用:

循环流化床锅炉因燃烧过程属于低温燃烧,同时炉内优良的燃尽条件,使得锅炉灰渣含碳量低,易于实现灰渣的综合利用。

如灰渣作为水泥掺和料或做建筑材料,同时做温烧透也有利于稀有金属的提取。

10、负荷调节范围大,负荷调节快:

当负荷变化时,当需调节给煤量、空气量和物料循环量、负荷调节比可达(3-4):

1,此外,由于截面风速高

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 法律文书 > 调解书

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1