(2)重力做功的特点是与物体的移动路径无关,只取决于物体始末位置的高度差,即VG=mgAh;重力做的功量度的是重力势能的变化或弹性力(遵
循胡克定律的弹力)做的功量度的是弹性势能的变化,表达式为VG=—△曰或W=—
△E°可见,(3)只有重力做功时,一定是物体的动能和重力势能之间相互转化,但系统机械能的总量保持不变;同理,只有弹性力做功时,一定是物体的动能和弹性势能之间相互转化,但系统机械能的总量也保持不变。
所以,重力或弹性力做功并不会改变系统的机械能。
换句话说,除重力和弹性力以外的其他力不做功或做的功代数和为零,系统的机械能总量保持不变,这就是机械能守恒定律。
(4)除重力
和弹性力以外的其他力做的功量度的是系统的机械能的变化,表达式为W其二△£(5)
一个静摩擦力或一个滑动摩擦力均可以做正功、不做功和做负功(请同学们自行举例说明,下同),且它们所做的功与移动的路径有关。
但一对相互作用的静摩擦力做功的代数和总为零,因为作用力与反作用力总是同时存在、等大反向,而且静摩擦力总是发生在相对静止的两物体接触面之间,要么两物体(对地)都静止,这一对相互作用的静摩擦力都不做功,总功为零;要么两物体(对地)在摩擦力的方向上
有相同的(分)位移,这一对相互作用的静摩擦力其中一个做正功,另一个必做等值的负功,总功也为零。
所以,静摩擦力做功的结果只能使机械能在相互作用的两物体之间发生传递,但不会改变系统的机械能总量。
而一对相互作用的滑动摩擦力做功的代数和总为负值,共有三种可能情况,第一种可能是一个滑动摩擦力不做功,它的反作用力却做负功;第二种可能是一个滑动摩擦力做负功,它的反作用力也做负功;第三种可能是相对滑动的两个物体(对地)朝同一个方向运动,一个滑动摩擦力对落后者做正功,它的反作用力对超前者做更多的负功。
所以,滑动摩擦力做功的结果总是要使相互作用的两物体组成的系统机械能总量减少,一对相互作用的
滑动摩擦力做功的代数和的绝对值量度的就是因摩擦所产生的内能,即Q=f相厶S,
式中AS表示物体间相对运动的路程。
刚
□
4——
1—
不过,无论是什么力做功,是哪些形量在相互转化,机械能是否守恒,各种形量总和不变,这就是能的转化和守恒定律。
【例4】如图所示,质量为m=1kg的滑块(可视为质点)放在质量为M=2kg的
长木板左端,木板放在粗糙水平面上,滑块与木板之间的动摩擦因数为口1=0.1,木
板与水平面之间的动摩擦因数为口2=0.2,木板长为L=150cm,幵始时两者都处于
静止状态。
(1)现用水平向左的恒力F拉木板的左端,要使木板从小滑块下面抽出,
F必须满足什么条件?
(2)若F=10N,则从幵始到刚好把木板抽出的过程中,摩擦
力对滑块做了多少功?
F对木板做了多少功?
【思路点拨】
(1)如果有拉力F作用,W将消耗的其他形式的能量转化为系统
的动能和克服系统的摩擦力做功产生热量,即Wf=AEk+Q,Q=f相AS
(2)如果没有拉力F作用,滑块或木板的初动能转换为克服系统的摩擦力做功
产生的热量,最终将停下来。
W合=AEkQ=f相厶S
【变式训练4】如图所示,质量m=1kg的小物块放在一质量为M=4kg的足够长
的木板右端,物块与木板间的动摩擦因数口=0.2,木板与水平面间的摩擦不计。
物
块用劲度系数k=25N/m的弹簧拴住,弹簧的另一端固定。
幵始时整个装置静止,弹
簧处于原长状态。
现对木板施以12N的水平向右恒力(最大静摩擦力可认为等于滑
、,2
动摩擦力,g=10m/s)。
求:
m
MIwwwawaP
F
>
(1)
点多远?
板的速度为
幵始施力的瞬间小物块的加速度;
(2)物块达到最大速度时离出发
(3)若弹簧第一次拉伸最长时木
1.5m/s,则从幵始运动到弹簧第一次达到最长损失的机械能是多少?
强化闯关:
1.如图所示,一足够长的木板静止在光滑
上,一物块静止在木板上,木板和物块间有摩擦。
现用水平力向右拉木板,当物块
相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为()
A.物块先向左运动,再向右运动
B.物块向右运动,速度逐渐增大,直到做匀速运动
C.木板向右运动,速度逐渐变小,直到做匀速运动
D.
m的木
木板和物块的速度都逐渐变小,直到为零
2.
如图,质量为m木块A(可视为质点)和质量为
击力而获得了一个向右运动的初速度Vo0AB之间的摩擦因数为!
,B与地面间的摩
擦因数为2,板的长度L,试分析AB可能的运动情况
3.
如图所示,质量M=8kg的小车放在水平光滑的在小车左端加一水平恒力F,F=8N,当小车向右
速度达到1.5m/s时,在小车前端轻轻地放上一个大小不计,质量为m=2kg的小物
块,物块与小车间的动摩擦因数口=0.2,小车足够长.求从小物块放上小车幵始,
2
经过t=1.5s小物块通过的位移大小为多少?
(取g=10m/s).
4.
以恒定
(2004全国卷I)一小圆盘静止在桌布一方桌的水平桌面中央。
桌布的一边与桌重合,如图。
已知盘与桌布间的动摩擦因
1,盘与桌面间的动摩擦因数为口2o现突然
的加速度a将桌布抽离桌面,加速度的方向水平且垂直于AB边。
若圆盘最后未从
桌面掉下,则加速度a满足的条件是什么?
(以g表示重力加速度)
5.如图为某生产流水线工作原理示意图。
足够长的工作平台上有一小孔A,—定长度的操作板(厚度可忽略不计)静止于小孔的左侧,某时刻幵始,零件(可视为质点)被无初速度地放上操作板中点,同时操作板在电动机带动下向右做匀加速直线运动直至运动到A孔的右侧(忽略小孔对操作板运动的影响),最终零件运动到A孔时速度恰好为零,并由A孔下落进入下一道工序。
已知零件与操作板间的动摩擦因
素!
0.05,与工作台间的动摩擦因素20.025,操作板与工作台间的动摩擦因素
30.3o试问:
(1)电动机对操作板所施加的力是恒力还是变力(只要回答是“变力”或“恒力”即可?
)
(2)操作板做匀加速直线运动的加速度a的大小为多少?
(3)若操作板长L=2m质量Mf=3kg,零件质量0.5kg,重力加速度取g=10m/s,
则操作板从A孔左侧完全运动到右侧过程中,电动机至少做多少功?
6.(2010福建卷)如图所示,物体A放在足够长的木板B上,木板B静置于水平面。
T=0时,电动机通过水平细绳以恒力F拉木板B,使它做初速度为零、加速度aB=1.0m/s2
的匀加速直线运动。
已知A的质量RA和B的质量m均为2.0kg,AB之间的动摩擦因数口1=0.05,B与水平面之间的动摩擦因数2=0.1,最大静摩擦力与滑动摩擦力
视为相等,重力加速度g取10m/s2。
求:
(1)物体A刚运动时的加速度aA;
(2)t=1.0s时,电动机的输出功率P;(3)若t=1.0s时,将电动机的输出功率立即调整为P=5V,
并在以后的运动过程中始终保持这一功率不变,t=3.8s时物体A的速度为1.2m/s。
则在t=1.0s到t=3.8s这段时间内木板B的位移为多少?
7.图1中,质量为m的物块叠放在质量为2m的足够长的木板上方右侧,木板放在光滑的水平地面上,物块与木板之间的动摩擦因数为0.2。
在木板上施加一水平
向右的拉力F,在0〜3s内F的变化如图2所示,图中F以mg为单位,重力加速度g=10m/s2.整个系统幵始时静止。
(1)求1s、1.5s、2s、3s末木板的速度以及2s、3s末物块的速度;
(2)在同一坐标系中画出0〜3s内木板和物块的v—t图象,据此求0〜3s内物块
间形成匀强电场E,长方体B的上表面光滑,下表面与水平面的动摩擦因数口=0.05
(设最大静摩擦力与滑动摩擦力相同),B与极板的总质量m=1.0kg.带正电的小滑
块A质量m=0.6kg,其受到的电场力大小F=1.2N.假设A所带的电量不影响极板间
的电场分布.t=0时刻,小滑块A从B表面上的a点以相对地面的速度VA=1.6m/s向左运动,同时,(连同极板)以相对地面的速度VB=0.40m/s向右运动.问(g取10m/s2)
(1)A和B刚幵始运动时的加速度大小分别为多少?
(2)若A最远能到达b点,a、b的距离L应为多少?
从t=0时刻到A运动到b点时,摩擦力对B做的功为多少?
【归纳总结】本专题涉及的基本问题:
判断滑块与木板间是否相对运动、能否分离、离开速度大小、对地位移、摩擦生热等等;基本道具:
水平面(光滑或粗糙)、木板和滑块(分有无初速度或水平方向受不受外力几种情形);基本方法和思路:
采用分解法分析复杂的物理过程,降低难度,帮助理解。
分析各阶段物体的受力情况,明确谁带谁、靠什么摩擦来带、是否带动、是否打滑,并确定各物体的运动性质(由合外力和初速度共同决定,即动力学观点);画好受力分析、运动示意图,建立清晰的物理情景,并从几何关系寻找物体之间的相互联系,甚至辅以V—t图像,都是解
决此类问题的重要手段。
也可以结合动量能量观点求解。
整体法与隔离法相结合,利用接触面间的静摩擦力存在最大值(近似等于滑动摩擦力)这个临界条件来分析判定是否出现相对滑动;然后利用动力学规律和能量观点求出相关的待求量。
(三)素材应用效果及启示
1、【效果】本专题复习传承了第一轮复习的精髓,较准确地反映了学生发展、社
会发展和学科发展对高考的具体要求。
遵循培养学生的创新精神和实践能力,进一步提高他们的科学素养的原则,以常见物理模型为载体,抓住知识的纵横联系,加深对双基知识的理解,提高解题能力;还可以将整个模型置于电磁场中,溶入电磁场的基本知识和规律,形成知识网络,提高学科内综合的能力;通过本专题复习,突出主干知识,使掌握的知识得以延伸和拓展;通过专项训练强化思维的缜密性和解题的规范性,带给学生的不仅仅是方法、思想、知识、美感,最重要的是先进的理念与超前的意识,对高考脉动的准确把握,对教改方向的正确领悟。
2、【启示】划分专题的方式不仅可以:
第一,按教材内容设计专题。
专题设计
要尽量精简,突出主干知识,渗透学科的基本思想和方法。
各部分知识间互相交错,
形成有机的知识体系。
纵横结合,互相联系。
第二,按试题类型设计专题。
选择题、实验题、材料题、计算综合题等,说明各类题型特点,进行解题方法指导。
第三,
按错误情况设计专题:
知识错误和缺漏;审题错误,解题方法不当,表述不当,解题格式不够规范,等等。
第四,按常见的模型设计专题:
如物理学科中传送带传送问题、弹簧类问题、“滑块+木板”模型问题、带电粒子在电磁场中的运动问题、“棒
+导轨”的电磁感应力电综合问题等等。
而以常见的模型设计专题,更能以物理模型为载体,抓住知识的纵横联系,形成知识网络,提高学科内综合能力。
【参考解答】
【例1】【分析与解答】综上分析可知,可能出现以下三种情况:
1当0冬F2当u2(m+m)gvF<(u1+u2)(m+n2)g时,A、B—起向右做匀加速直线运动,共同加速度为a-—2(m1m2)g,0vamim2
AB之间静摩擦力大小为仃二mam[F—2(m*m2)g],0vfAmim2
③当F>(ui+u2)(m+m)g时,AB之间出现相对运动,AB之间滑动摩擦力大小为
fA=uimg。
对A有:
uimg二maA得aA=uig
对B有:
F-u2(m+m)g—uimg二m2aB得aB可见,欲使B从A下方抽出来,加在B上的
力最小值应为(ui+u2)(m+m)g。
在满足这个条件的前提下,设A在B上滑动的
时间是t,如图所示,它们的位移关系是SBSAL即aBt2/2aAt2/2L,由此可
B是否相对地面滑
以计算出时间t
【变式训练i】【思路点拨】本题虽然也涉及两个临界问题:
动;二、A是否相对B滑动。
但这里首先需要明确B是靠A对它的摩擦力来带动的。
由题设知最大静摩擦力Jax和滑动摩擦力相等,只要「mgv口2(m+m)g,无论F多大,A是否相对B滑动,B均相对地面静止不动。
换句话说,只有口img>u2(m+m)g时,A才有可能把B带动。
所以,B是否相对地面滑动的临界条件是:
F=uimg二口2
(m+m)g;而A、B间滑动与否的临界条件为:
aAaB,即
(Fimig)/mi[imp2(mim2)g]/m2。
【解答】综上分析,本题可能出现五种情况:
1当口imig<口2(m+m)g时,无论F多大,B均相对地面静止不动。
I.如果0冬F<「mg,则A也静止不动,AB之间静摩擦力大小等于B地之间静摩擦力大小fA=fB=F;
n.如果F>口img,则A在B上做匀加速运动,加速度为a-—巴卫,AB之间滑动
m1
摩擦力大小等于B地之间静摩擦力大小fA=fB=口img0
2当口img>口2(m+m)g时,A、B受力如图所示
I.如果0冬F<口2(m+m)g,A、B均静止不动,AB之间静摩擦力大小等于B地之间静摩擦力大小fA=fB=F;
n.如果口2(m+m)gvFm2
共同加速度为aF—2(mim2)go0vav―2(mim2)g,AB之间静摩擦力大
mim2m2
小为f=□2(m+m)g+ma匹^2mi(mi一匹^<口img;
mim2
B地之间滑动摩擦力大小fB二口2(m+m)g;
川.如果F>—2)吶m2)g,AB之间出现相对运动,即最常见的“AB一起
m2
滑,速度不一样”,A最终将会从B上滑落下来
AB之间滑动摩擦力大小为f=「mg;B地之间滑动摩擦力大小fp二口2(m+m)g;
可见,欲使A能从B上方拉出来,加在A上的水平恒力最小值Fmin应为:
当yimg^u2(m+m)g时,Fmin二「mg,由at2/2L可得A在B上滑动的时间
厂(i2)mi(mim2)g
Fmin
m2
可以计算出时间t0
(存
即口2=0,口i二口,F>口(m+m)g的情形,只要力F作用在长木板上足够长时间
在最小值)后撤去,小滑块必定能从长木板右端滑离。
解法一:
动
运动学公
如上图所示,设力F作用时间ti后撤去,最终小滑块恰好能从长木板右端滑离(也可以理解为恰好不能滑离)。
所以,临界状态和条件是小滑块出现在长木板右端时,
—t图像如图所示
两者恰好达到相同速度V
对m,
全过程有:
口mg=mai得ai=口g
①
2
v=2aiSi②
对M,
撤去力F前,有:
F—^mg=Ma
③
S?
=a2ti/2④
撤去力F后,有:
umg=Ma,
⑤
(a2ti)2—v2=2a
⑥
解法二:
动量能量观点(动量定理和动能定理)
设力F作用时间11后撤去,再经时间12小滑块恰好能从长木板右端滑离由动量定理,在时间ti内
对M:
(F—口mg)11二Mv①
对m:
口mgti=mv②
在时间t2内
对M:
—口mgt>=Mv—Mv③
对m:
口mgt=mv—mv④
由动能定理,
对M,在时间11内:
(F—口mgS=Mv2/2⑤
2
对m,全过程:
^mgS=mv/2⑦
由几何关系,有:
S2+S2—Si=L⑧
联立以上各式可得:
ti=1s即此力作用的最短时间为is⑨
当然,本题还可以由动量定理和功能关系对系统全过程列方程如下:
Ft1=(m+Mv①
2
FS2—口mgL=(m+M)v/2②
而在时间11内,对M:
(F—口mgti二Mv③
(F—口mgS2=Mv2/2④
联立以上四式可得:
ti=1s即此力作用的最短时间为is
【小结】不论用哪一种方法求解,采用分解法分析复杂的物理过程,对各物体正确
受力分析,画好运动示意图,建立清晰的物理情景,并从几何关系寻找物体之间的相互联系,甚至辅以v—t图像,都是解决此类问题的重要手段。
【变式训练2】【分析与解答】与例1相比较,本题可以看成是例2②中的一种特殊情况:
即口2=0,口1=口,的情形,只要作用在小滑块上力F达到一定值{存