积分微分比例运算电路.docx

上传人:b****8 文档编号:28015142 上传时间:2023-07-07 格式:DOCX 页数:14 大小:283.03KB
下载 相关 举报
积分微分比例运算电路.docx_第1页
第1页 / 共14页
积分微分比例运算电路.docx_第2页
第2页 / 共14页
积分微分比例运算电路.docx_第3页
第3页 / 共14页
积分微分比例运算电路.docx_第4页
第4页 / 共14页
积分微分比例运算电路.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

积分微分比例运算电路.docx

《积分微分比例运算电路.docx》由会员分享,可在线阅读,更多相关《积分微分比例运算电路.docx(14页珍藏版)》请在冰豆网上搜索。

积分微分比例运算电路.docx

积分微分比例运算电路

模拟电路课程设计报告

 

题目:

积分、微分、比例运算电路

一、设计任务与要求

①设计一个可以同时实现积分、微分和比例功能的运算电路。

②用开关控制也可单独实现积分、微分或比例功能

用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。

二、方案设计与论证

用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V),为运算电路提供偏置电源。

此电路设计要求同时实现比例、积分、微分运算等功能。

即在一个电路中利用开关或其它方法实现这三个功能。

方案一:

用三个Ua741分别实现积分、微分和比例功能,在另外加一个Ua741构成比例求和运算电路,由于要单独实现这三个功能,因此在积分、微分和比例运算电路中再加入三个开关控制三个电路的导通与截止,从而达到实验要求。

缺点:

开关线路太多,易产生接触电阻,增大误差。

此运算电路结构复杂,所需元器件多,制作难度大,成本较高。

并且由于用同一个信号源且所用频率不一样,因此难以调节。

流程图如下:

图1

方案二:

用一个Ua741和四个开关一起实现积分、微分和比例功能,并且能够单独实现积分、微分或比例功能。

优点:

电路简单,所需成本较低。

电路图如下:

图2

三、单元电路设计与参数计算

1、桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。

其流程图为:

稳压电路

滤波电路

整流电路

电源变压器

图3

直流电源电路图如下:

图4

原理分析:

(1)电源变压器:

由于要产生±12V的电压,所以在选择变压器时变压后副边电压应大于24V,由现有的器材可选变压后副边电压为30V的变压器。

(2)整流电路:

其电路图如下:

图5

①原理分析:

桥式整流电路巧妙地利用了二极管的单向导电性,将四个二极管分为两组,根据变压器副边电压的极性分别导通,将变压器副边电压的正极性端与负载电阻的上端相连,负极性端与负载电阻的下端相连,使负载上始终可以得到一个单方向的脉动电压。

图6

整流输出电压的平均值(即负载电阻上的直流电压VL)VL定义为整流输出电压VL在一个周期内的平均值,即

设变压器副边线圈的输出电压为

,整流二极管是理想的。

则根据桥式整流电路的工作波形,在Vi的正半周,VL=V2,且VL的重复周期为p,所以

上式也可用其它方法得到,如用傅里叶级数对图XX_01中VL的波形进行分解后可得

式中恒定分量即为负载电压VL的平均值,因此有

②整流元件参数:

在选择整流二极管时,主要考虑两个参数,即最大整流电流和反向击穿电压。

在桥式整流电路中,二极管D1、D3和D2、D4是两两轮流导通的,所以流经每个二极管的平均电流为

在选择整流管时应保证其最大整流电流IF>ID。

二极管在截止时管子两端承受的最大反向电压可以从桥式整流电路的工作原理中得出。

在v2正半周时,D1、D3导通,D2、D4截止。

此时D2、D4所承受的最大反向电压均为v2的最大值,

即                                 

同理,在v2的负半周,D1、D3也承受到同样大小的反向电压。

所以,在选择整流管时应取其反向击穿电压VBR>VRM。

(3)滤波电路。

其电路图如下:

图7

电容滤波电路简单,负载直流电压VL较高,纹波也较小,它的缺点是输出特性较差,故适用于负载电压较高,负载变动不大的场合。

所以在选择电容时其耐压值应大于1.4V2,电容越大越好,其级别应在千uF以上。

(4)稳压电路。

启动电路

基准电压电路

取样比较放大电路和调整电路

保护电路

对于本实验的稳压电路,主要使用了集成块:

78系列。

目前,电子设备中常使用输出电压固定的集成稳压器。

由于它只有输入、输出和公共引出端,故称之为三端式稳压器。

78××系列输出为正电压,输出电流可达1A,如78L××系列和78M××系列的输出电流分别为0.1A和0.5A。

它们的输出电压分别为5V、6V、9V、12V、15V、18V和24V等7档。

和78××系列对应的有79××系列,它输出为负电压,如79M12表示输出电压为–12V和输出电流为0.5A。

由于本实验要产生±12V的恒流源,所以在选择集成块时选7812和7912。

 

2、积分、微分、比例运算电路电路图

(1)比例运算电路参数计算:

由于“虚断”,i+=0,u+=0;

由于“虚短”,u-=u+=0——“虚地”

由iI=iF,得

反相输入端“虚地”,电路的输入电阻为Rif=R1

引入深度电压并联负反馈,电路的输出电阻为R0f=0

该实验所设定的比例系数为-10,由uo=-(R5/R1)uI推出R5/R1=10。

(2)积分运算电路参数计算:

由于“虚地”,u-=0,故uO=-uC

由于“虚断”,iI=iC,故uI=iIR=iCR

τ=RC——积分时间常数

输入电压为阶跃信号,当t≤t0时,uI=0,uO=0。

当t0

uI=UI=常数,

即输出电压随时间而向负方向直线增长。

当t>t1时,uI=0,uo保持t=t1时的输出电压值不变。

实现的波形变换为方波变三角波

(3)微分运算电路参数计算:

由于“虚断”,i-=0,故iC=iR

又由于“虚地”,u+=u-=0

可见,输出电压正比于输入电压对时间的微分。

微分电路的作用:

实现波形变换,如当RC<

四、总原理图及元器件清单

1.总原理图

图8

2.元件清单表

元件序号

型号

主要参数

数量

备注(单价)

T

1

5

A

µA741

1

0.8

R

1K

1

0.05

R

10K

1

0.05

R

20K

1

0.05

R

100K

1

0.05

C

3.3mF

2

0.5

C

0.47µF

1

0.2

U3

LM7812

1

1

U4

LM7912

1

1

LED

2

0.3

D

1N4007

8

0.1

5、安装与调试

1、安装:

按电路图布局好电路,之后焊接好电路板。

2、调试:

静态调试:

用万用表对电路板进行静态测试,目的主要是为了防止虚焊或者漏焊。

动态调试:

接好电路利用示波器和函数信号发生器验证积分、微分和比例功能:

当为积分电路时,输入方波信号时,调节各种数据参数,输出应该为

三角波信号;当为微分电路时,输入方波信号时,调节信号发生器的频率

使RC<

入信号的十倍。

6、性能测试与分析

  桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源仿真波形:

图9

三种功能一起实现时,输入分别为正弦波 三角波 方波时波形如下:

 

图10

图11

图12

积分运算电路仿真波形(输入为方波时输出为三角波):

图13

微分电路仿真波形(输入为方波时输出为尖峰脉冲):

图14

比例电路仿真波形(输出为输入为-10倍):

图15

(1)实验数据:

1 变压器原边电压:

220V

2 变压器副边电压:

+14V-14V

3 稳压块的输入电压:

+18.25V-17.25V

4 稳压块的输出电压:

+11.75V-11.75V

5 比例运算电路输入电压:

253.8mV

输出电压:

2.53V.

(2)数据处理:

①理论值的计算:

1)副边电压:

+15V-15V

2)稳压输出电压:

+12V-12V

3)输入正弦波电压:

253.8mv.

4)输出电压-1.500V:

2.53V

②误差计算:

变压器副边:

η1=(15-14)/15*100%=6.7%

稳压电压:

η2=(12-11.75)/12*100%=2.08%

η3=(-11.75+12)/20*100%=2.08%

比例运算电路:

η4=(10-2.53/20.2538)/10*100%=0.315%

7、结论与心得

完成了积分、微分、比例运算电路及桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源的制作,之后感觉更加进入了社会,有理论还不行一定得考虑实际。

从积分、微分电路设计中就可发现这一真理,而且由于所用软件中的所有元件都为理想原件,即使达到了实验要求,实际运用中也未必有效。

它让我们对书本知识有进一步的理解。

平时在学习课本上的知识时,觉得难以理解,对元件的认识也很浅。

但经过这次的课程设计制作,我们自己去市场上购买自己需要的元件,增加了我们对元件的了解。

通过这次课程设计我对模拟电子技术有了更进一步的熟悉和了解,实际操作起来很困难,要将实际和理论联系起来需要不断的下功夫,它和课本上的知识有很大联系,但又高于课本,一个看似很简单的电路,要动手把它设计出来就比较困难了,因为是设计要求我们在以后的学习中注意这一点,要把课本上所学到的知识和实际联系起来,同时通过本次电路的设计,不但巩固了所学知识,也使我们把理论与实践从真正意义上结合起来,增强了学习的兴趣,考验了我们借助互联网络搜集、查阅相关文献资料,和组织材料的综合能力。

八、参考文献

1、《模拟电子技术基础》第四版童诗白与华成英主编,高等教育出版社.(2006);

2、《电子技术实验与课程设计》赣南师范学院物理与电子信息学院编;

3、《用万用表检测电子元器件》杜龙林编,辽宁科学技术出版社(2001);

4、《毕满清主编,电子技术实验与课程设计》  机械工业出版社;

5、《电工电子实践指导》(第二版),王港元主编,江西科学技术出版社(2005)。

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 面试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1