房间自动照明控制系统设计毕业设计论文.docx
《房间自动照明控制系统设计毕业设计论文.docx》由会员分享,可在线阅读,更多相关《房间自动照明控制系统设计毕业设计论文.docx(49页珍藏版)》请在冰豆网上搜索。
房间自动照明控制系统设计毕业设计论文
毕业设计说明书
基于单片机的房间自动照明控制系统设计
UndergraduateDesign(Thesis)
TheIntelligencControlSystemDesignof
RoomLightingBasedonMCU
BY
JIJiangkun
Supervisedby
AssociateLecturerLUDanhong
SchoolofElectricPowerEngineering
NanjingInstituteofTechnology
June2008
摘要
随着电子技术的飞速发展,基于单片机的控制系统已广泛应用于工业、农业、电力、电子、智能楼宇等行业,微型计算机作为嵌入式控制系统的主体与核心,代替了传统的控制系统的常规电子线路。
同时楼宇智能化的发展与成熟,也为基于单片机的照明控制系统的普及与应用奠定了坚实的基础。
本文阐述了照明的控制方式设计原理与实现方法。
以设计过程为主线,分别从硬件和软件两个方面描述设计过程,即从硬件电路的设计方法到实现所要求功能的软件技术。
该照明控制系统的控制器分别是以AT89C51单片机为基础,实现了控制与显示等功能。
文中详细地描述了控制电路的设计过程,包括:
与LCD显示电路,照明灯控制电路以及看门狗电路等。
对于软件设计主要有控制器、程序设计与灯光控制、键盘扫描与LCD显示等程序设计。
该功能是:
通过人体释热红外线传感器,光敏三极管和AT89C51单片机控制的照明灯实现开启、关闭、调节房间亮度功能。
关键词:
单片机,手动控制,自动控制,人体释热红外线传感器,光敏三极管
Abstract
Withtherapiddevelopmentofelectronictechnology,thesystemofcontrolbasedonSingle-chipMicrocomputeriswidelyappliedinindustry,agriculture,electricpower,electron,intelligentbuildingandsoon.Microcomputer,asthesubjectandcoreoftheembeddedsystemofcontrol,replacesthetraditionalsystem—electroniccircuit.Atthesametime,thedevelopmentandmaturationoftheintelligentbuildinghaveestablishedthesubstantialfoundationforthepopularizationandapplicationofthecontrolsystemforlightingbasedonsingle-chipmicrocomputer.
Thepaperexpatiatesonthedesigningtheoriesandimplementationmethodofthecontrolsystemforlighting.Takingthedesigningprocessasmainline,itdescribestheprocessofdesigningfromtworespects—hardwareandsoftware.Inanotherword,thepaperdescribestheprocessfromthemethodofcircuitdesigningtothesoftwaretechnologyofrealizingthedemandedfunctions.ThecontrollerofthecontrolsystemforlightingisbasedonAT89C51single-chipmicrocomputer.Thesystemcandomanyjobs,suchascontrollinganddisplay.Thepaperdescribesthedesigningprocessofthecircuitatlength,including:
keyboardandLCDdisplaycircuit,controlcircuitoflighting,watchdogcircuit,etc.Thedesigningofsoftwaremainlyincludestheseveralprogramming,suchaslamplightcontrolling,keyboardscanningandLCDdisplaying.ThefunctionisthatthroughHuman-releasethermalinfrared,PhototransistorandAT89C51single-chipmicrocomputersendsorderstoturnonlighting,turnofflighting,regulatebrightnessofroom,etc.
KeyWords:
SCM,Manualcontrol,Automaticcontrol,Human-releasethermalinfrared,Phototransistor
第一章绪论
近十几年来,随着我国城市建设的快速发展,楼宇照明也相应飞速发展。
在楼宇的照明数量与质量两个方面均有显著的变化与提高,特别是随着人民生活水平进入小康水平,楼宇照明水平提高很快,追求人工照明光环境的舒适性、个性化、安全、节能等方面日见突出。
楼宇中人工光环境对于满足人们的生活、学习、娱乐以及工作方面有着重要的意义。
照明控制系统传统是以照明配电箱通过手动开关来控制照明灯具的通断,或通过回路中串入接触器,实现远距离控制。
而今出现的楼宇自控系统,是以电气触点来实现区域控制、定时通断、中央监控等功能。
由于照明控制系统在楼宇自控系统中并非独立,同时控制功能简单,因此使用上有一定的局限性。
故当楼宇自控系统出现故障时,照明系统亦受到影响。
随着微电子技术与数字化技术的发展,开发出了智能化水平更高的专业照明控制的独立系统,从而能节约能源、延长灯具寿命、提高照明质量。
根据使用客户的经验,不仅使照明管理与设备维修简单及降低费用外,还对环境改善、提高工作效率都有着显著的效果。
本系统是以单片机为控制器的核心,其是以AT89C51为基础,以人体释热红外线传感器和光敏三极管为信号采集单元,再连接外围电路,通过单片机通信方式实现照明灯具的智能控制。
1.1系统设计要点
照明作为智能楼宇的子系统之一,它对智能楼宇的舒适性、经济性、方便性具有重要的意义。
利用人体的存在信号和环境光信号的识别和智能判断,可以有效的对房间照明回路的智能控制,避免了照明用电的大量浪费。
本设计以AT89C51单片机作为控制装置的智能部件,采用热释红外人体传感器检测人体的存在(没人时教室里灯全关,有人则进行下步行动),采用光敏三极管构成的电路检测环境光的强度(光强时灯全关,光一般时灯开两盏,光弱时开3盏灯);根据房间合理开灯的条件,系统通过对人体的存在信号和环境光信号的识别和智能判断,完成对房间照明回路的智能控制,避免了教室用电的大量浪费[9]。
在特殊情况下(如多媒体教学和电影文学欣赏)可以通过手动来控制灯的开关。
一号按钮控制手动与自动,二号按钮控制灯的开关盏数(按0次没灯开,按1次开1盏灯,按2次开2盏灯,按3次开3盏灯,按4次后返回到0)。
在系统设计中设计方法的选用是系统设计能否成功的关键。
硬件电路是采用结构化系统设计方法,该方法保证设计电路的标准化、模块化。
硬件电路的设计最重要的选择用于控制的单片机,并确定与之配套的外围芯片,使所设计的系统既经济又高性能。
硬件电路设计还包括输入输出接口设计,画出详细电路图,标出芯片的型号、器件参数值,根据电路图在仿真机上进行调试,发现设计不当及时修改,最终达到设计目的[10]。
软件设计的方法与开发环境的选取有着直接的关系,本系统由于是采用51系列单片机,因此使用汇编语言进行开发。
1.2系统的结构
系统的结构主要由三部分组成:
(1)单片机控制系统
(2)信号采集处理系统(3)LCD显示系统(4)电灯电源驱动系统,达到控制照明灯具的目的。
图1.1结构示意图
外接的传感器(人体释热红外线传感器和光敏三极管)将信号传送给单片机后,由单片机控制灯的开关和显示系统。
系统在单片机的控制之下完成数据的处理、显示,同时能够控制照明灯具,其硬件电路只是系统的实施工具,大量的工作是由软件来完成的。
这些程序是系
统的灵魂,是负责完成硬件电路实现功能和与用户交互的桥梁,是维护系统正常工作的工具。
1.3系统性能指标及技术要求
首先单片机通过按钮1判定是自动还是手动,若是自动则人体存在信号采集电路和光敏三极管采光电路先后工作判定室内是否有人,和室内关照度,单片机再决定是否开灯,开几盏灯。
最后通过LCD显示开了几盏灯和关闭了几盏灯。
手动/自动
(1)自动
A全关
B开2盏灯
C开3盏灯
(2)手动
A全关
B开1盏灯
C开2盏灯
D开3盏灯
1.4本章小结
本章主要从系统设计要点、系统的结构、系统性能指标及技术要求三方面对所研究的照明控制系统的设计框架和性能进行了阐述,该系统由一个主控制器与若干个分控制器组成。
系统的设计首先要从硬件方面着手,在绘制出正确的电路图后,再按功能要求编制出相应的软件程序,最终要达到所要求的性能指标。
第二章硬件设备的应用
2.1单片机的应用技术
电子技术和微型计算机的迅速发展,促进微型计算机测量和控制技术的迅速发展和广泛应用,单片机(单片微型计算机)的应用已经渗透到国民经济的各个部门和领域,它起到了越来越重要的作用。
单片微型计算机就是将中央处理单元、存储器、定时/计数器和多种接口都集成到一块集成电路芯片上的微型计算机。
因此一块芯片就构成了一台计算机。
它已成为工业控制领域、智能仪器仪表、尖端武器、日常生活中最广泛使用的计算机。
单片机由硬件系统与软件系统组成。
硬件系统是指构成微机系统的实体与装置,通常由运算器、控制器、存储器、输入接口电路和输入设备、输出接口电路和输出设备等组成[1]。
其中运算器和控制器一般做在一个集成芯片上,统称中央处理单元(CentralProcessingUnit)[2],简称CPU,是微机的核心部件。
CPU配上存放程序和数据的存储器[2]、输入/输出(Input/Output,简称I/O)[2]接口电路以及外部设备即构成单片机的硬件系统。
软件系统是微机系统所使用的各种程序的总称,人们通过它对微机进行控制并与微机系统进行信息交换,使微机按照人的意图完成预定的任务。
软件系统与硬件系统共同构成完整的单片微型计算机系统,两者相辅相成,缺一不可。
2.2人体释热红外线传感器
人体释热红外线传感器(及红外线热释电传感器)由敏感单元、阻抗变换器和滤光窗等三大部分组成[7]。
敏感单元的制造材料有所不同。
如,SD02的敏感单元由锆钛酸铅制成;P2288由LiTaO3制成。
这些材料再做成很薄的薄片,每一片薄片相对的两面各引出一根电极,在电极两端则形成一个等效的小电容。
因为这两个小电容是做在同一硅晶片上的,而它们形成的等效小电容能自身产生极化,极化的结果是,在电容的两端产生极性相反的正、负电荷。
但这两个电容的极性是相反串联的。
这正是传感器的独特设计之处,因而使得它具有独特的抗干扰性[7]。
物体发射出的红外线辐射能,最强波长和温度的关系满足λm*T=2989(um.k)(其中λm为最大波长,T为绝对温度)。
人体的正常体温为36~37.5。
C,即309~310.5K,其辐射的最强的红外线的波长为λm=2989/(309~310.5)=9.67~9.64um,中心波长为9.65um。
因此,人体辐射的最强的红外线的波长正好落在滤光窗的响应波长(7~14um)的中心。
所以,滤光窗能有效地让人体辐射的红外线通过,而最大限度地阻止阳光、灯光等可见光中的红外线的通过,以免引起干扰[8]。
综上所述,传感器只对移动或运动的人体和体温近似人体的物体起作用。
在电子防盗、人体探测器领域中,被动式热释电红外探测器的应用非常广泛,因其价格低廉、技术性能稳定而受到广大用户和专业人士的欢迎。
被动式热释电红外探头的工作原理及特性:
在自然界,任何高于绝对温度(零下273度)时物体都将产生红外光谱,不同温度的物体,其释放的红外能量的波长是不一样的,因此红外波长与温度的高低是相关的。
在被动红外探测器中有两个关键性的元件,一个是热释电红外传感器(PIR),它能将波长为8到12um之间的红外信号变化转变为电信号,并能对自然界中的白光信号具有抑制作用,因此在被动红外探测器的警戒区内,当无人体移动时,热释电红外感应器感应到的只是背景温度,当人体进人警戒区,通过菲涅尔透镜,热释电红外感应器感应到的是人体温度与背景温度的差异信号,因此,红外探测器的红外探测的基本概念就是感应移动物体与背景物体的温度的差异[7]。
另外一个器件就是菲涅尔透镜,菲涅尔透镜有两种形式,即折射式和反射式。
菲涅尔透镜作用有两个:
一是聚焦作用,即将热释的红外信号折射(反射)在PIR上,第二个作用是将警戒区内分为若干个明区和暗区,使进入警戒区的移动物体能以温度变化的形式在PIR上产生变化热释红外信号,这样PIR就能产生变化的电信号。
人体都有恒定的体温,一般在37度,所以会发出特定波长10微米左右的红外线,被动式红外探头就是靠探测人体发射的10微米左右的红外线而进行工作的。
人体发射的10微米左右的红外线通过菲泥尔滤光片增强后聚集到红外感应源上。
红外感应源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,后续电路经检测处理后就能产生报警信号[8]。
1)这种探头是以探测人体辐射为目标的。
所以热释电元件对波长为10微米左
右的红外辐射必须非常敏感。
2)为了仅仅对人体的红外辐射敏感,在它的辐射照面通常覆盖有特殊的菲泥尔滤光片,使环境的干扰受到明显的控制作用。
3)被动红外探头,其传感器包含两个互相串联或并联的热释电元。
而且制成的两个电极化方向正好相反,环境背景辐射对两个热释元件几乎具有相同的作用,使其产生释电效应相互抵消,于是探测器无信号输出。
4)人一旦侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元接收,但是两片热释电元接收到的热量不同,热释电也不同,不能抵消,经信号处理而报警。
5)菲泥尔滤光片根据性能要求不同,具有不同的焦距(感应距离),从而产生不同的监控视场,视场越多,控制越严密。
优点是本身不发任何类型的辐射,器件功耗很小,隐蔽性好。
价格低廉。
缺点是:
◆容易受各种热源、光源干扰
◆被动红外穿透力差,人体的红外辐射容易被遮挡,不易被探头接收。
◆易受射频辐射的干扰。
◆环境温度和人体温度接近时,探测和灵敏度明显下降,有时造成短时失灵。
红外线热释电人体传感器只能安装在室内,其误报率与安装的位置和方式有
极大的关系。
正确的安装应满足下列条件:
1、红外线热释电传感器应离地面2~2.2米。
2、红外线热释电传感器远离空调,冰箱,火炉等空气温度变化敏感的地方。
3、红外线热释电传感器和被探测的人体之间不得间隔家具、大型盆景、玻璃、窗帘等其他物体。
4、红外线热释电传感器不能直对窗口,否则窗外的热气流扰动和人员走动会引起误报,有条件的最好把窗帘拉上。
红外线热释电传感器也不要安装在有强气流活动的地方[7]。
图2.1红外线热释电传感器工作区示意图
红外线热释电传感器对人体的敏感程度还和人的运动方向关系很大。
红外线热释电传感器对于径向移动反应最不敏感,而对于横切方向(即与半径垂直的方向)移动则最为敏感.。
在现场选择合适的安装位置是避免红外探头误报、求得最佳检测灵敏度极为重要的一环。
2.3光敏三极管
通过对半导体二极管和三极管的学习,我了解了晶体管的基本结构和工作原理,晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。
三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种,从三个区引出相应的电极,分别为基极b发射极e和集电极c。
发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。
基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。
发射极箭头向外。
发射极箭头指向也是PN结在正向电压下的导通方向。
硅晶体三极管和锗晶体三极管都有PNP型和NPN型两种类型。
虽然重点学习了晶体管的放大作用,但是我对晶体管的开关作用更感兴趣。
半导体就像一个开关,可以通过导通与截止来控制电路。
半导体通过添加一部分微量元素会使其特性发生翻天覆地的变化。
光敏晶体
管就是一种重要的衍生物。
视觉是人体最重要的感觉,因此,我觉得通过光来控制电路真是太精妙了,而光敏的二极管三极管恰好就完成这个任务。
因为光敏三极管由于还具有放大作用,因此应用比二极管更加广泛。
光敏三极管用于测量光亮度,经常与发光二极管配合使用作为信号接收装置。
在教室图书馆,很多时候日光灯白天也亮着,在宿舍里面,日光灯经常是昼夜不息,同学们对这种浪费已经麻木不仁了。
有的同学早晨去教室,虽然教室很明亮但还要开灯,虽然一盏日光灯不会浪费多少资源,但积少成多,浪费就是很大了。
因此,我们可以在教室安装一个控制电路,当亮度达到一定程度的时候,使得教室里面和宿舍里面日光灯将无法启动。
我们可以利用光敏三极管附加电磁
继电器来完成这个电路。
采光点的选取是一个关键,因为并不是每一个教室的明亮程度都是相同的,我们可以采用多点取样来达到这个要求。
例如在20个教室中都安放光敏三极管,我们可以设置,如果他们全部或者大部分亮度都很高,那么,日光灯就无法正常启动,达到节约能源的目的。
还有一种情况,就是如果有一天天空布满了乌云,亮度不够,那么日光灯可以开启了。
但是不久云开雾散,天气放晴,日光灯不会自动关闭。
同样造成很大浪费。
可以在采光点所在的教室外面再安装一个采光点,当室内外强度的差值缩小到一定范围是,我们可以认为日光灯的作用可以忽略了,日光灯就会自动关闭。
另外一种情况,如果教室外面正下雨,教室里面日光灯亮着,此时窗外一个闪电,使得外面很亮,日光灯就关闭了,这会造成麻烦。
因此要避免这种问题。
方法就是在电路中安装计数器,使得亮度差维持一定时间才可以使日光灯强制关闭。
综上所述,我们可以利用光敏三极管设计一个电路,使得日光灯无法正常启动或者被强制关闭从而达到节约能源的目的。
当然,这种方法的可行性从现在看并不是很高,电路要改装费用可能很高都会影响实施。
不过我认为的确可以通过光敏三极管的特性来得到节约的目的。
2.4LCD液晶显示
1602采用标准的16脚接口,其中:
第1脚:
VSS为低电源
第2脚:
VDD接5V正电源
第3脚:
V0为液晶显示器对比度调整端,接正电源时对比度最弱,接地电源时对比度最高,对比度过高时会产生“鬼影”,使用时可以通过一个10K的电位器调整对比度
第4脚:
RS为寄存器选择,高电平时选择数据寄存器、低电平时选择指令寄存器。
第5脚:
RW为读写信号线,高电平时进行读操作,低电平时进行写操作。
当RS和RW共同为低电平时可以写入指令或者显示地址,当RS为低电平RW为高电平时可以读忙信号,当RS为高电平RW为低电平时可以写入数据。
第6脚:
E端为使能端,当E端由高电平跳变成低电平时,液晶模块执行命令。
第7~14脚:
D0~D7为8位双向数据线。
第15~16脚:
空脚
1602液晶模块内部的字符发生存储器(CGROM)已经存储了160个不同的点阵字符图形,阿拉伯数字、英文字母的大小写、常用的符号、和日文假名等,每一个字符都有一个固定的代码,比如大写的英文字母“A”的代码是01000001B(41H),显示时模块把地址41H中的点阵字符图形显示出来,我们就能看到字母“A”[6]。
它的读写操作、屏幕和光标的操作都是通过指令编程来实现的。
(说明:
1为高电平、0为低电平)
指令1:
清显示,指令码01H,光标复位到地址00H位置
指令2:
光标复位,光标返回到地址00H
指令3:
光标和显示模式设置I/D:
光标移动方向,高电平右移,低电平左移S:
屏幕上所有文字是否左移或者右移。
高电平表示有效,低电平则无效
指令4:
显示开关控制。
D:
控制整体显示的开与关,高电平表示开显示,低电平表示关显示C:
控制光标的开与关,高电平表示有光标,低电平表示无光标B:
控制光标是否闪烁,高电平闪烁,低电平不闪烁
指令5:
光标或显示移位S/C:
高电平时移动显示的文字,低电平时移动光标
指令6:
功能设置命令DL:
高电平时为4位总线,低电平时为8位总线N:
低电平时为单行显示,高电平时双行显示F:
低电平时显示5x7的点阵字符,高电平时显示5x10的点阵字符
指令7:
字符发生器RAM地址设置
指令8:
DDRAM地址设置
指令9:
读忙信号和光标地址BF:
为忙标志位,高电平表示忙,此时模块不能接收命令或者数据,如果为低电平表示不忙。
指令10:
写数据
指令11:
读数据
DM-162液晶显示模块可以和单片机AT89C51直接接口,电路如图2.2所示。
液晶显示模块是一个慢显示器件,所以在执行每条指令之前一定要确认模块的忙标志为低电平,表示不忙,否则此指令失效。
要显示字符时要先输入显示字符地址,也就是告诉模块在哪里显示字符1602的内部显示地址[6]。
比如第二行第一个字符的地址是40H,那么是否直接写入40H就可以将光标定位在第二行第一个字符的位置呢?
这样不行,因为写入显示地址时要求最高位D7恒定为高电平1所以实际写入的数据应该是:
01000000B(40H)+10000000B(80H)=11000000B(C0H)。
以下是在液晶模块的第二行第一个字符的位置显示字母“A”的程序:
ORG0000H
RSEQUP3.7;确定具体硬件的连接方式
图2.2DM-162(及1602)与AT89C51连接图
RWEQUP3.6;确定具体硬件的连接方式
EEQUP3.5;确定具体硬件的连接方式
MOVP1,
#00000001B;清屏并光标复位
ACALLENABLE;调用写入命令子程序
MOVP1,#00111000B;设置显示模式:
8位2行5x7点阵
ACALLENABLE;调用写入命令子程序
MOVP1,#00001111B;显示器开、光标开、光标允许闪烁
ACALLENABLE;调用写入命令子程序
MOVP1,#00000110B;文字不动,光标自动右移
ACALLENABLE;调用写入命令子程序
MOVP1,#0C0H;写入显示起始地址(第二行第一个位置)
ACALLENABLE;调用写入命令子程序
MOVP1,#010