射频设计实验.docx

上传人:b****4 文档编号:27508519 上传时间:2023-07-02 格式:DOCX 页数:19 大小:53.06KB
下载 相关 举报
射频设计实验.docx_第1页
第1页 / 共19页
射频设计实验.docx_第2页
第2页 / 共19页
射频设计实验.docx_第3页
第3页 / 共19页
射频设计实验.docx_第4页
第4页 / 共19页
射频设计实验.docx_第5页
第5页 / 共19页
点击查看更多>>
下载资源
资源描述

射频设计实验.docx

《射频设计实验.docx》由会员分享,可在线阅读,更多相关《射频设计实验.docx(19页珍藏版)》请在冰豆网上搜索。

射频设计实验.docx

射频设计实验

RFDesignLabs

Version1-1

Author:

AndyStreet(Telnet317-5395)

Revisiondate:

22May2001

ListofSkeletonFilesintheProject

Match1.dsn

Match2.dsn

Txline3.dsn

Lumped1.dsn

DiodeMatch.dsn

DiodeMatchMS.dsn

DiodeMatchMS2.dsn

Lna1.dsn

Lna2.dsn

Lna3.dsn

SynthesisandAnalysisofPracticalTransmissionLines

Instructions

StartADS,opentheHFDCprojectandloadLineCalc(Tools->LineCalc).

 

Synthesis

Usingtheinformationgiveninthetablesbelow,calculatethephysicalparametersrequiredtorealisecharacteristicimpedancesof50ohmsand150ohmsandelectricallengthsof90O.Assumeanoperatingfrequencyof1GHzandthatalldimensionsareinmm.

 

TxLineType

Element

Parameters

50ohmline

150ohmline

Coaxial

COAX

r=2.2

DO=2.00

DI=0.58

DI=0.049

L=50.5

L=50.53

Coaxial

COAX

r=2.2

DO=10.00

DI=2.9

DI=0.244

L=50.5

L=50.53

Microstrip

MLIN

r=2.95

h=0.79

W=1.98

W=0.14

L=48.6

L=52.1

Microstrip

MLIN

r=10

h=0.635

W=0.59

W=0.0035

L=29.3

L=33.4

Stripline

SLIN

r=2.95

b=1.58

W=0.99

W=0.03

L=43.6

L=43.6

Notes:

Coax:

usedefaultparametersofTanD=0.02(losstangentofdielectric),Rho=1.00(resistivityrelativetocopper),sigma=0(surfaceroughness).EnsureDOisthefixedparameter.AlsoensurethatyourDIparameteris‘intheballpark’fortherequiredZO.

Microstrip:

usethefollowingparametersMur=1.0(relativepermeability),Hu=3.9e+34orsomeotherverylargenumber(heightofcover),T=17.5um(metallizationthickness),Cond=4.1e7(conductorconductivity),TanD=0.003(dielectriclosstangent),Rough=0(conductorsurfaceroughness).

Stripline:

usethefollowingparametersMur=1.0(relativepermeability),T=17.5um(metallizationthickness),Cond=5.8e7(conductorconductivity),TanD=0.003(dielectriclosstangent).

 

AnalysisofTransmissionLines

Assumethattheminimumrepeatablemicrostriplinewidthonaboardis0.15mm.Whatisthemaximumcharacteristicimpedance(ofthemicrostripline)thatcanbeimplementedonthefollowing:

R=2.95h=0.79mmt=17.5umZO=147.7

R=10.0h=0.635mmt=17.5umZO=82.1

 

InputImpedancetoaTransmissionLine

Openthefiletxline3.dsn.

InthisexercisewewillexaminetheinputimpedancetoatransmissionlineusingthetunefunctioninADSandtheSmithChartforthedisplayformat.Theschematicshowsaverysimplenetworkconsistingofa200ohmloadconnectedtotheinputterminal(thesource)viaanidealpieceoftransmissionline(anelectricalmodelwithnolossordispersionthatischaracterisedintermsofitscharacteristicimpedance,ZO,itselectricallength,E,andthefrequencyatwhichtheelectricallengthisisapplicable).Initiallytheschematicshowsthetransmissionlinewithzeroelectricallengthi.e.theloadiseffectivelyconnectedtotheinputport.Wewillsimulatethisnetworkatasinglefrequencyof1GHz(doubleclickontheS-parameterblockandnotethatthesweeptypeissettoSinglePoint).

∙Simulatethenetwork(Simulate->Simulate,orpressF7)

∙Openanewdatawindow(Window->NewDataDisplay)

∙PresstheSmithChartIconandplacethenewplotinthewhitearea

∙AddS(1,1)totheplot(thenpressokay)

IfyouexaminetheplotcarefullyyouwillseeasinglepointontherealaxisoftheSmithCharttotherightofthematchpoint.Verifythereflectioncoefficient(S11)andimpedanceatthispointusingamarker(Marker->Newandthenplacethemarkeratthedatapoint).ForclaritymovethemarkertextofftheSmithChartaxis.Verifythatthemarkershows:

S11=0.60Znorm=ZO(4+j0)

Nextwewillsetupthetunefunctionandadjusttheelectricallengthofthetransmissionlineandmonitortheinputimpedance.

∙Selectthetunefunction(Simulate->Tuning)

∙Whilstthecross-hairsarepresent,selecttheEvalueofthetransmissionline

∙Increasethetracehistoryto60andpress‘Details’tosetuptherangeoftuning.

∙IntheDetailsmenu,chooseMin=0,Max=360,StepSize=5,thenclick‘Brief’

∙Withthetunewindowanddatadisplaybothvisible,incrementtheelectricallengthofthetransmissionline.NotetheupdatedtraceontheSmithChart–wearetracingoutaconstantVSWRcirclei.e.themagnitudeofthereflectioncoefficientremainsconstantwhilstitsphasechanges.Notealsohowtheimpedancehasacapacitiveelementtoit,thenitbecomesentirelyreal,thenithasaninductiveelementtoit.

Atwhatelectricallengthistheinputimpedancetothelineatitsminimumresistivevalue?

90degrees

Howmanywavelengthsoftransmissionlinedoesittaketoreturntothestartingpoint(i.e.the200ohmpoint?

).180degrees

 

Finally,letuslookattheeffectofvaryingthelengthofthetransmissionlineontheinputimpedance.Todothiswewillneedtosetuptheelectricallengthofthetransmissionlineasavariableandthensweepthisvariable.

∙Toaddavariabletotheschematic:

Onthelefthandsidemenuchoose‘DataItem’.Fromthepalettechoose‘Vareqn’andplaceitontheschematic.Doubleclickontheboxtoedit.Inthe‘Name’boxreplace‘X’with‘elen’andinthe‘VariableValue’boxreplacethe‘1.0’with‘0’.Thenchooseclick‘Apply’,verifythatthechangehasbeenupdatedandthenclick‘Okay’.

∙Toreferencetheelectricallengthofthetransmissionlinetoourrecentlycreatedvariable,editthe‘E’entryforthetransmissionlinesuchthatitreads‘elen’(youcandothisontheschematic).

∙Toaddasweepcontroltosweeptheelectricallength:

fromthelefthandsidemenuchoose‘Opt/Stat/Yield’andselect‘PrmSwp’fromthepaletteandplacethesweepplanontheschematic.Doubleclickonthe‘PrmSwp’(ParameterSweep)boxtoedittheparameters.Underthe‘Sweep’tab,typein‘elen’astheparametertosweepandsetupthesweepasStart=0,Stop=360,Step-size=5.Underthe‘Simulations’tabtype‘SP1’inthe‘Simulations1’box–thissetsupthesimulatortoperformtheSP1simulation(S-parametersimulationatourfixedfrequencyof1GHz).

ChooseanewdatawindowandaddaCartesian(XY)plot.Forthedatatraceselect‘Z’(RealPart)Addvs.‘elen’.Repeattheprocessandchoose‘Z’(ImaginaryPart)Addvs.‘elen’.

Wenowhaveaplotofinputimpedancevs.electricallength.

Whatisthemaximumresistancevalue?

200ohms

Atwhatpointsistheinputimpedanceamaximumpureresistance?

nx180deg

Whatistheminimumresistancevalue?

12.5ohms

Atwhatpointsistheinputimpedanceaminimumpureresistance?

90+nx180

Istherearelationshipbetweenthemaximumandminimumresistancevalues?

Yes,whenthelinelengthis90degrees,wehaveaquarterwavetransformer.Recall:

ElementParasitics

Asdiscussedduringthecourse,lumpedelementshaveparasiticsassociatedwiththem,precludingtheiruseathigherfrequencies.Inthefollowingexerciseweshalllookatasurfacemountinductorandexaminehowtheparasiticelementsaffectthecomponentperformance.

Openlumped1.dsn

Inthisschematic,wehaveonecircuitwhichisalibrarymodelofasurfacemountinductor,whilsttheotherisanapproximategenericmodeloftheinductor.(Theseriesresistancemodelsthelosses,whilstthecapacitanceaccountsfortheparasiticcapacitanceassociatedwiththepackage).Termination1(TERM#1)isconnectedtothelumpedelementmodelwhilstTermination2(TERM#2)isconnectedtothelibrarycomponent.Thus,inthesimulation,S11willrefertothereflectioncoefficientofthelumpedelementmodel,whilstS22willrefertothereflectioncoefficientofthelibraryelement.

Simulatethecircuit(Simulate->Simulate)andthenopenaresultswindow(Window->OpenDataDisplayandthenchooselumped.dds).

Examinetheplots:

∙TopXYplotshowsthereturnlossvs.frequency.Theplotsarebroadlysimilaruptoabout1GHz(apartfromtheverylowfrequencypoints–thisbeingduetothemodelhavingnolossmechanism).

∙MiddleXYplotshowsthephaseofthereturnloss.Itisevidentthatthereissomediscrepancybetweenthe‘ideal’inductor(ourmodelwhichfornowonlyincludesaninductanceterm)andthelibrarymodel.

∙BottomXYplotshows‘inductanceversusfrequency’.Theinputimpedanceisoftheform:

Sothattheimaginarypartisgivenby:

Thus,dividingby2fgivestheapparentinductance.

Againweseediscrepancybetweentheidealandlibrarybasedcircuits.Finally,theSmithChartshowstheinputimpedanceofbothcircuits.Bothfollowthe50ohmcircleofconstantresistance,butthephaseofthelibrarymodelincreasesmorequicklywithfrequency.

Now,letsusethe‘Tune’functiontoseeifwecandeterminevaluesforRandCinourmodel.Inthecircuitschematicwindow,selecttheRcomponentandthenselecttune(Simulate->Tuning).Apop-upboxappearswiththeparametersassociatedwithR(namelytheresistance!

).Clickonthedetailsbuttonandchange‘TraceHistory’settingto0(i.e.itwillnotkeeptunedplotsonourdisplay).Changethe‘StepSize’entryto0.05(thiswillallowincrementsin0.05ohmsteps).Withtheresultwindowclearlyinview,incrementtheresistancevalueuntilyougetagoodmatchbetweenthelowfrequencyperformanceofthelibraryandmodelcircuits.Whenyouaresatisfied,clickonthe‘Update’button–thiswillupdatethevalueintheschematic.

Withthetuningwindowstillopen,selectthecapacitorfromtheschematic.Performasimilarprocessoftuningthecapacitor.Suggestedstepsizeis0.01pF.

Whatistheseriesresistanceofyourmodel:

0.4ohms

Whatistheparasiticcapacitanceinyourmodel:

0.29pF

NowadjusttheSparameterblock(doubleclickontheSParameterblock)andincreasethestopfrequencyto8GHz.Examinetheresultsnow.Aboveacertainfrequencytheinductorbecomescapacitive!

Whatisthefrequencyatwhichtheind

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 党团工作 > 入党转正申请

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1