课程设计产品包装生产线.docx

上传人:b****3 文档编号:27344303 上传时间:2023-06-29 格式:DOCX 页数:29 大小:445.46KB
下载 相关 举报
课程设计产品包装生产线.docx_第1页
第1页 / 共29页
课程设计产品包装生产线.docx_第2页
第2页 / 共29页
课程设计产品包装生产线.docx_第3页
第3页 / 共29页
课程设计产品包装生产线.docx_第4页
第4页 / 共29页
课程设计产品包装生产线.docx_第5页
第5页 / 共29页
点击查看更多>>
下载资源
资源描述

课程设计产品包装生产线.docx

《课程设计产品包装生产线.docx》由会员分享,可在线阅读,更多相关《课程设计产品包装生产线.docx(29页珍藏版)》请在冰豆网上搜索。

课程设计产品包装生产线.docx

课程设计产品包装生产线

产品包装生产线(方案3)

一、设计课题概述

如图1所示,输送线1上为小包装产品,其尺寸为长*宽*高=600*200*200,采取步进式输送方式,送第一包产品至托盘A上(托盘A上平面与输送线1的上平面同高)后,托盘A下降200mm,第二包产品送到后,托盘A上升200mm,然后把产品推入输送线2。

原动机转速为1430rpm,产品输送量分三档可调,每分钟向输送线2分别输送8、16、24件小包装产品。

图1功能简图

二、设计课题工艺分析

由题目和功能简图可以看出,推动产品在输送线1上运动的是执行机构1,在A处使产品上升,下降的是执行构件2,在A处把产品推到下一个工位的是执行构件3,三个执行构件的运动协调关系如图所示。

T2(T3)

T1

执行构件

运动情况

执行构件1

退

退

执行构件2

执行构件3

退

图2运动循环图

图1中T1为执行构件1的工作周期,T2是执行构件2的工作周期,T3是执行构件3的工作周期。

由图2可以看出,执行构件1是作连续往复移动的,而执行构件2则有一个间歇往复运动,执行构件3作一个间歇往复运动。

三个执行构件的工作周期关系为:

2T1=T2=T3。

执行构件3的动作周期为其工作周期的1/8.

三、设计课题运动功能分析及运动功能系统图

根据前面的分析可知,驱动执行构件1工作的执行机构应该具有运动功能如图3所示。

该运动功能把一个连续的单向转动转换为连续的往复移动,主动件每转动一周,从动件(执行构件1)往复运动一次,主动件的转速分别为8、16、24rpm。

8、16、24rpm

图3执行机构1的运动功能

由于电动机转速为1430rpm,为了在执行机构1的主动件上分别得到8、16、24rpm的转速,则由电动机到执行机构之间的传动比iz有3种分别为:

总传动比由定传动比ic与变传动比iv组成,满足以下关系式:

iz1=iciv1

iz2=iciv2

iz3=iciv3

三种传动比中iz1最大,iz3最小。

由于定传动比ic是常数,因此3种传动比中iv1最大,iv3最小。

若采用滑移齿轮变速,其最大传动比最好不要大于4,即:

iv1=4

则有:

ic=

故定传动比的其他值为:

iv2=

.00

iv3=

 

于是,有级变速单元如图4:

i=4,2,1.33

图4有级变速运动功能单元

为保证系统过载时不至于损坏,在电动机和传动系统之间加一个过载保护环节。

过载保护运动功能单元可采用带传动实现,这样,该运动功能单元不仅具有过载保护能力,还具有减速功能,如图5所示。

i=2.5

图5过载保护运动功能单元

整个传动系统仅靠过载保护功能单元的减速功能不能实现全部定传动比,因此,在传动系统中还要另加减速运动功能单元,减速比为

i=

=17.88

减速运动功能单元如图6所示。

i=17.88

图6执行机构1的运动功能

根据上述运动功能分析,可以得到实现执行构件1运动的功能系统图,如图7所示。

1430rpmi=2.5i=4,2,1.33i=17.88

 

图7实现执行构件1运动的运动功能系统图

为了使用同一原动机驱动执行构件2,应该在图7所示的运动功能系统图加上1个运动分支功能单元,使其能够驱动分支执行构件2,该运动分支功能单元如图8所示。

执行构件2的执行运动是间歇往复移动。

执行构件3有一个执行运动,为间歇往复移动,其运动方向与执行构件1的运动方向垂直。

为了使执行构件2和执行构件3的运动和执行构件1的运动保持正确的空间关系,可以加一个运动传动方向转换功能单元,如图9所示。

 

 

图8运动分支功能单元

图9运动传动方向转换的运动功能单元

经过运动传递方向转换功能单元输出的运动需要分成两个运动分支分别驱动执行构件2的一个运动和执行构件3的一个运动。

因此,需要加一个运动分支功能分支单元,如图10所示。

 

图10运动分支功能单元

执行构件2的一个运动是间歇往复移动,可以通过一个运动单元将连续转动转换成间歇往复移动。

如图11所示。

图11连续转动转换为间歇往复移动的运动功能单元

根据上述分析可以得出实现执行构件1和执行构件2运动功能的运动功能系统图,如图14所示。

 

图14执行构件1、2的运动功能系统图

执行构件3需要进行间歇往复移动,为此,需要将连续转动转换为间歇转动。

考虑采用一个运动系数为的间歇运动单元,如图15所示。

 

图15间歇运动功能单元

尽管执行构件3在一个工作周期内,其间歇时间很长,运动时间很短,但是当其运动时,运动则是连续的、周期的。

因此,需要把图15中的运动功能单元的输出运动转换为整周运动,于是在其后加一个运动放大功能单元,如图16所示。

然后,再把该运动功能单元输出地运动转换为往复移动,其运动功能单元如图17所示。

图16运动放大功能单元

图17把连续转动转换为往复移动的运动功能单元

根据上述分析,可以画出整个系统的运动功能系统图,如图18所示。

1

4

3

2

 

6

5

 

7

 

图18产品包装生产线(方案8)的运动功能系统图

四、设计课题运动方案拟定

根据图18所示的运动功能系统图,选择适当的机构替代运动功能系统图中的各个运动功能单元,便可拟定出机械系统运动方案。

图18中的运动功能单元1是原动机。

根据产品包装生产线的工作要求,可以选择电动机作为原动机。

如图19所示。

1430rpm

1

图19电动机替代运动功能单元1

图18中的运动功能单元2是过载保护单元兼具减速功能,可以选择带传动实现,如图20所示。

 

2

 

图20过载保护功能单元

图18中的运动功能单元3是有级变速功能单元,可以选择滑移齿轮变速传动替代,如图21所示。

 

图21滑移齿轮变速替代运动功能单元3

图18中的运动功能单元4是减速功能,可以选择2级齿轮传动代替,如图22所示。

 

图222级齿轮传动替代运动功能单元4

图15中运动功能单元5是运动分支功能单元,可以用运动功能单元7锥齿轮传动的主动轮、运动功能单元6导杆滑块结构的曲柄与运动功能单元4的运动输出齿轮固连替代,如图23所示。

图232个运动功能单元的主动件固联替代运动功能单元5

 

图18中的运动功能单元6将连续传动转换为往复移动,可以选择六杆步进送料机构,即导杆滑块机构替代,如图24所示。

 

图24不完全齿轮和导杆滑块机构替代运动功能单元6

图18中的运动功能单元7是运动传递方向转换功能单元,可以用圆锥齿轮传动替代,如图25所示。

 

图25圆锥齿轮传动运动功能单元7

运动单元8的类型与运动单元5相同。

图18中的运动功能单元9是将连续转动转换为间歇往复移动,可以用凸轮结构实现,如图26所示。

图26凸轮传动机构替代运动功能单元9

图18中运动功能单元10是把连续转动转换为间歇转动的运动功能单元,运动功能单元11是运动放大功能单元,把运动功能单元10中不完全齿轮在一个工作周期中输出的1/8周的转动转换为一周的运动,其传动比为i=1/8。

可以用不完全齿轮机构替代,如图27所示。

 

图27用不完全齿轮轮传动替代运动功能单元10、11

 

图18中运动功能单元12是把连续转动转换为连续往复移动的运动功能单元,可以用曲柄滑块机构替代,如图28所示。

 

图28用曲柄滑块机构替代运动功能单元12

根据上述分析,按照图18各个运动单元连接顺序把个运动功能单元的替代机构一次连接便形成了产品包装生产线(方案3)的运动方案简图,如图所示。

(a)

(b)

(c)

图29产品包装生产线(方案3)的运动方案简图

五、设计课题运动方案设计

1)滑移齿轮传动设计

1确定齿轮齿数

如图21中齿轮5,6,7,8,9,10组成了滑移齿轮有级变速单元,其齿数分别为z5,z6,z7,z8,z9,z10。

由前面分析可知,

iv1=4

=

=2

=

=1.33

按最小不根切齿数取z9=17,则z10=iv1z9=417=68

为了改善传动性能应使相互啮合的齿轮齿数互为质数,取z10=69。

其齿数和为z9+z10=17+69=86,为满足传动比和中心距要求,三对齿轮均取角度变位齿轮。

2计算齿轮几何尺寸

齿轮

5

6

7

8

9

10

变位系数

0.6

0.9

0.6

0.9

0.6

1.3

齿数

37

49

29

58

17

69

取模数m=2mm,齿顶高系数1,顶隙系数0.25,得实际中心距为89.99mm。

2)定轴齿轮传动设计

(1)圆柱齿轮传动设计

由图可知,齿轮11、12、13、14实现运动功能单元4的减速功能,它所实现的传动比为36。

由于齿轮11、12、13、14是2级齿轮传动,这2级齿轮传动的传动比可如此确定

于是

为使传动比更接近于运动功能单元4的传动比17.88,取

取模数m=2mm,按标准齿轮计算。

由图34-(b)可知,齿轮26、27实现运动功能单元11的放大功能,它所实现的传动比为

可按最小不根切齿数确定,即

z26=17

则齿轮27的齿数为17/i=68

齿轮26、27的几何尺寸,取模数m=2mm,按标准齿轮计算。

(2)圆锥齿轮传动设计

由图27-(a)可知,圆锥齿轮16、17起改变运动方向并有i=2的减速作用,两圆锥齿轮的轴交角为90o,齿轮16齿数取最小不根切当量齿数17即可,则齿轮17齿数

取模数m=2mm,尺寸按标准齿轮计算。

3)执行机构1的设计

该执行机构是曲柄滑块机构,由曲柄,滑块,导杆,连杆和滑枕组成。

其中大滑块的行程h=480mm,现对机构进行参数计算。

该机构具有急回特性,在导杆与曲柄的轨迹圆相切时候,从动件处于两个极限位置,此时导杆的末端分别位于C1和C2位置。

取定C1C2的长度,使其满足:

利用平行四边形的特点,由下图可知滑块移动的距离E1E2=C1C2=h,这样就利用了机构急回运动特性,使滑块移动了指定的位移。

设极位夹角为θ,显然导杆21的摆角就是θ,取机构的行程速比系数K=1.4,由此可得极位夹角和导杆21的长度。

图30导杆滑块机构设计

先随意选定一点为D,以D为圆心,l为半径做圆。

再过D作竖直线,以之为基础线,左右各作射线,与之夹角15°,交圆与C1和C2点。

则弧C1C2即为导杆顶部转过的弧线,当导轨从C1D摆到C2D的时候,摆角为30°。

接着取最高点为C,在C和C1之间做平行于C1C2的直线m,该线为滑枕21的导路,距离D点的距离为

在C1点有机构最大压力角,设导杆21的长度为l1,最大压力角的正弦等于

要求最大压力角小于100,所以有

l1越大,压力角越小,取l1=200~400mm。

则取l=300mm1

曲柄15的回转中心在过D点的竖直线上,曲柄越长,曲柄受力越小,可选

取AD=600mm,据此可以得到曲柄19的长度

 

4)执行机构2的设计

如图27(b)所示,执行机构2有一个运动是将连续传动转换为间歇往复移动,选用直动平底从动件盘形凸轮机构来实现。

凸轮基圆半径100mm,无偏距,升程为200mm。

推程为正弦加速,回程为余弦加速。

凸轮机构在一个工作周期的运动为

 

凸轮24:

远休止角90

,回程运动角90°,近休止角90°,推程运动角36

,远休止角54

从动件推程200mm,推回程均采用无冲击的正弦加速度方式。

得到如下表格:

 

角度范围

S

0≤θ≤

200

≤θ≤

400

≤θ≤

200

 

图31凸轮运动的位移图

根据凸轮的从动件运动规律,我们可以利用解析法设计出凸轮的轮廓。

具体设计流程:

做出

-s图像,利用压力角的要求可以做出凸轮的基圆和偏距,这样,可以利用解析法求出凸轮的形状。

由于电动机的转向是可以调整的,往右边看凸轮是顺时针转动的。

取凸轮偏距为0,即设计成对心的滚子凸轮机构。

图32凸轮

 

经查表许用压力角采用40°确定凸轮的基圆为

350mm,取偏距e=0,滚子半径r=20mm。

1=(

+s)cos

+ecos

y1=(

+s)sin

-esin

2=(

+s-r)cos

+ecos

y2=(

+s-r)sin

-esin

 

得到凸轮的理论轮廓和实际轮廓如图33:

图33凸轮的理论轮廓和实际轮廓图

6)执行构件3的设计

(1)曲柄滑块机构设计

图34执行机构3

执行机构3驱动构件2运动,由图可知,执行构件3由曲柄27,连杆29和滑块30组成。

由题可知,滑块30的行程是:

则曲柄的长度可以确定为

连杆29的长度与许用压力角有关,即:

一般

则,

=600mm,取

(2)不完全齿轮机构的设计

曲柄28由不完全齿轮26、27控制其转动周期和动停时间比,由运动周期得到主动轮与从动轮运动周期之比为1:

1,主动轮26从0o转到315o,从动轮27停止,主动轮从315o转到360o期间,从动轮转一周,故确定主动轮为不完全齿轮,1/8有齿,7/8无齿,从动轮为标准完全齿轮,确定模数为2mm,主动轮假想齿数和从动轮齿数分别为120和15,则中心距a=135smm。

6)传送带设计

传动带选用平带的开口传动,根据传动比

,可定带轮的直径为

7)运动方案执行构件的运动时序分析

1、曲柄19的初始位置

如图33所示,曲柄19顺时针转动时的初始位置由角

确定。

由于该曲柄导杆机构的极位夹角θ=30°,因此,当导杆21处于左侧极限位置时,曲柄19与水平轴的夹角

图35系统运动示意图

2、凸轮的初始位置

如图34可知凸轮为顺时针转动。

其初始位移应为200mm。

下图中,左图为连接示意图,右图为凸轮的轮廓图。

图36凸轮转动方向示意图

3、曲柄28的初始位置

如图37所示,曲柄28逆时针转动时的初始位置由初始角度

确定。

滑块30的起始极限位置在左侧,因此,曲柄28与水平轴的夹角

图37不完全齿轮机构运动示意图

4、不完全齿轮26的起始位置

如图37所示,不完全齿轮26逆时针转动时的初始位置由角

确定,齿轮要在最后1/8周期才与27啮合,因此,不完全齿轮26与水平轴的夹角

 

六、设计课题运动方案分析

本题中,有三种送料方式,由原动机转速为1430rpm,产品输送量分三档可调,每分钟向输送线2分别输送8、16、24件小包装产品。

则输出的转速为

则输出曲柄19的角速度为0.8378rad/s,同理另外两种的角速度分别为1.6756rad/s,2.5134rad/s。

为例,推料的曲柄滑块机构的位移,速度以及加速度随角度的变化如图38所示,

图38滑块的位移、速度、加速度图像

 

下面分析凸轮的位移、速度、加速度的变化曲线:

1、位移

角度范围

S

0≤θ≤

200

≤θ≤

400

≤θ≤

200

如图39所示

图39凸轮角位移图像

 

2、速度

角度范围

0≤θ≤

0

≤θ≤

≤θ≤

0

如图40所示

图40凸轮的角速度图像

 

3、加速度

角度范围

a

0≤θ≤

0

≤θ≤

≤θ≤

0

如图41所示

图41凸轮角加速度图像

 

该机械系统的机构运动循环图如图40所示

各构件的时序情况与运动情况

执行构件1

20

退

退

19

~

执行构件2

凸轮

24

角度

0°~90°

90°~180°

180°~270°

270°~306°

306°~360°

运动

休止

下降200mm

休止

上升200mm

休止

执行构件3

齿轮27

休止

转动一周

曲柄28

休止

转动一周

滑块30

休止

推+回

图40械系统机构运动循环图

欢迎您的下载,资料仅供参考!

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > IT计算机 > 计算机软件及应用

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1