新步步高学年高二物理教科版选修35导学案第一章 4 习题课 动量守恒定律的应用 Word版含答.docx

上传人:b****4 文档编号:27331768 上传时间:2023-06-29 格式:DOCX 页数:17 大小:108.77KB
下载 相关 举报
新步步高学年高二物理教科版选修35导学案第一章 4 习题课 动量守恒定律的应用 Word版含答.docx_第1页
第1页 / 共17页
新步步高学年高二物理教科版选修35导学案第一章 4 习题课 动量守恒定律的应用 Word版含答.docx_第2页
第2页 / 共17页
新步步高学年高二物理教科版选修35导学案第一章 4 习题课 动量守恒定律的应用 Word版含答.docx_第3页
第3页 / 共17页
新步步高学年高二物理教科版选修35导学案第一章 4 习题课 动量守恒定律的应用 Word版含答.docx_第4页
第4页 / 共17页
新步步高学年高二物理教科版选修35导学案第一章 4 习题课 动量守恒定律的应用 Word版含答.docx_第5页
第5页 / 共17页
点击查看更多>>
下载资源
资源描述

新步步高学年高二物理教科版选修35导学案第一章 4 习题课 动量守恒定律的应用 Word版含答.docx

《新步步高学年高二物理教科版选修35导学案第一章 4 习题课 动量守恒定律的应用 Word版含答.docx》由会员分享,可在线阅读,更多相关《新步步高学年高二物理教科版选修35导学案第一章 4 习题课 动量守恒定律的应用 Word版含答.docx(17页珍藏版)》请在冰豆网上搜索。

新步步高学年高二物理教科版选修35导学案第一章 4 习题课 动量守恒定律的应用 Word版含答.docx

新步步高学年高二物理教科版选修35导学案第一章4习题课动量守恒定律的应用Word版含答

4 习题课 动量守恒定律的应用

[目标定位] 1.进一步理解动量守恒定律的含义,理解动量守恒定律的系统性、相对性、矢量性和独立性.

2.进一步熟练掌握应用动量守恒定律解决问题的方法和步骤.

1.动量守恒定律成立的条件

动量守恒定律的研究对象是相互作用的物体系统,其成立的条件可理解为:

(1)理想条件:

系统不受外力.

(2)实际条件:

系统所受外力为零.

(3)近似条件:

系统所受外力比相互作用的内力小得多,外力的作用可以被忽略.

(4)推广条件:

系统所受外力之和虽不为零,但在某一方向,系统不受外力或所受的外力之和为零,则系统在这一方向上动量守恒.

2.动量守恒定律的五性

动量守恒定律是自然界最重要、最普遍的规律之一.它是一个实验定律,应用时应注意其:

系统性、矢量性、相对性、同时性、普适性.

一、动量守恒条件及守恒对象的选取

1.动量守恒定律成立的条件:

(1)系统不受外力或所受外力的合力为零;

(2)系统在某一方向上不受外力或所受外力的合力为0;

(3)系统的内力远大于外力.

2.动量守恒定律的研究对象是系统.选择多个物体组成的系统时,必须合理选择系统,再对系统进行受力分析,分清内力与外力,然后判断所选系统是否符合动量守恒的条件.

【例1】 

图1-4-1

质量为M和m0的滑块用轻弹簧连接,以恒定速度v沿光滑水平面运动,与位于正对面的质量为m的静止滑块发生碰撞,如图1-4-1所示,碰撞时间极短,在此过程中,下列情况可能发生的是(  )

A.M、m0、m速度均发生变化,碰后分别为v1、v2、v3,且满足(M+m0)v=Mv1+mv2+m0v3

B.m0的速度不变,M和m的速度变为v1和v2,且满足Mv=Mv1+mv2

C.m0的速度不变,M和m的速度都变为v′,且满足Mv=(M+m)v′

D.M、m0、m速度均发生变化,M和m0的速度都变为v1,m的速度变为v2,且满足(M+m0)v=(M+m0)v1+mv2

答案 BC

解析 M和m碰撞时间极短,在极短的时间内弹簧形变极小,可忽略不计,因而m0在水平方向上没有受到外力作用,动量不变(速度不变),可以认为碰撞过程中m0没有参与,只涉及M和m,由于水平面光滑,弹簧形变极小,所以M和m组成的系统水平方向动量守恒,两者碰撞后可能具有共同速度,也可能分开,所以只有B、C正确.

二、单一方向动量守恒问题

1.动量守恒定律的适用条件是普遍的,当系统所受的合外力不为零时,系统的总动量不守恒,但是不少情况下,合外力在某个方向上的分量却为零,那么在该方向上系统的动量分量就是守恒的.

2.分析该方向上对应过程的初、末状态,确定初、末状态的动量.

3.选取恰当的动量守恒的表达式列方程.

三、多物体多过程动量守恒定律的应用

对于由多个物体组成的系统,由于物体较多,作用过程较为复杂,这时往往要根据作用过程中的不同阶段,将系统内的物体按作用的关系分成几个小系统,对不同阶段、不同的小系统准确选取初、末状态,分别列动量守恒定律方程求解.

【例2】 (2014·江西高二联考)如图1-4-2所示,A、B两个木块质量分别为2kg与0.9kg,A、B与水平地面间接触面光滑,上表面粗糙,质量为0.1kg的铁块以10m/s的速度从A的左端向右滑动,最后铁块与B的共同速度大小为0.5m/s,求:

图1-4-2

(1)A的最终速度;

(2)铁块刚滑上B时的速度.

答案 

(1)0.25m/s

(2)2.75m/s

解析 

(1)选铁块和木块A、B为一系统,

由系统总动量守恒得:

mv=(MB+m)vB+MAvA

可求得:

vA=0.25m/s

(2)设铁块刚滑上B时的速度为u,此时A、B的速度均为vA=0.25m/s.

由系统动量守恒得:

mv=mu+(MA+MB)vA

可求得:

u=2.75m/s.

借题发挥 处理多物体、多过程动量守恒应注意的问题

1.注意正方向的选取.

2.研究对象的选取,是取哪几个物体为系统.

3.研究过程的选取,应明确哪个过程中动量守恒.

针对训练 

图1-4-3

两辆质量相同的小车,置于光滑的水平面上,有一人静止站在A车上,两车静止,如图1-4-3所示.当这个人从A车跳到B车上,接着又从B车跳回A车并与A车保持相对静止,则A车的速率(  )

A.等于零B.小于B车的速率

C.大于B车的速率D.等于B车的速率

答案 B

解析 选A车、B车和人作为系统,两车均置于光滑的水平面上,在水平方向上无论人如何跳来跳去,系统均不受外力作用,故满足动量守恒定律.设人的质量为m,A车和B车的质量均为M,最终两车速度分别为vA和vB,由动量守恒定律得0=(M+m)vA-MvB,则

,即vA

四、动量守恒定律应用中的临界问题分析

在动量守恒定律的应用中,常常会遇到相互作用的两物体相距最近、避免相碰和物体开始反向运动等临界问题.分析临界问题的关键是寻找临界状态,临界状态的出现是有条件的,这个条件就是临界条件.临界条件往往表现为某个(或某些)物理量的特定取值.在与动量相关的临界问题中,临界条件常常表现为两物体的相对速度关系与相对位移关系,这些特定关系的判断是求解这类问题的关键.

【例3】 如图1-4-4所示,甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他的冰车总质量为M=30kg,乙和他的冰车总质量也是30kg.游戏时,甲推着一个质量为m=15kg的箱子和他一起以v0=2m/s的速度滑行,乙以同样大小的速度迎面滑来,为了避免相撞,甲突然将箱子沿冰面推给乙,箱子滑到乙处,乙迅速抓住.若不计冰面摩擦.

图1-4-4

(1)若甲将箱子以速度v推出,甲的速度变为多少?

(用字母表示)

(2)设乙抓住迎面滑来的速度为v的箱子后反向运动,乙抓住箱子后的速度变为多少?

(用字母表示)

(3)若甲、乙最后不相撞,甲、乙的速度应满足什么条件?

箱子被推出的速度至少多大?

答案 

(1)

(2)

(3)v1≤v2 5.2m/s

解析 

(1)甲将箱子推出的过程,甲和箱子组成的整体动量守恒,由动量守恒定律得:

(M+m)v0=mv+Mv1①

解得v1=

(2)箱子和乙作用的过程动量守恒,以箱子的速度方向为正方向,由动量守恒定律得:

mv-Mv0=(m+M)v2③

解得v2=

(3)甲、乙不相撞的条件是v1≤v2⑤

其中v1=v2为甲、乙恰好不相撞的条件.

联立②④⑤三式,并代入数据得

v≥5.2m/s.

某一方向上动量守恒问题

1.

图1-4-5

如图1-4-5所示,在光滑的水平面上有一静止的斜面,斜面光滑,现有一个小球从斜面顶点由静止释放,在小球下滑的过程中,以下说法正确的是(  )

A.斜面和小球组成的系统动量守恒

B.斜面和小球组成的系统仅在水平方向上动量守恒

C.斜面向右运动

D.斜面静止不动

答案 BC

解析 球和斜面组成的系统在水平方向上不受外力作用,故水平方向动量守恒.小球下滑时,对地有向下的加速度,即系统存在向下的加速度,故系统竖直方向上所受合外力不为零,合外力向下,因此不能说系统动量守恒.

多物体、多过程中的动量守恒问题

图1-4-6

2.

如图1-4-6所示,质量为M的盒子放在光滑的水平面上,盒子内表面不光滑,盒内放有一块质量为m的物体.从某一时刻起给m一个水平向右的初速度v0,那么在物块与盒子前后壁多次往复碰撞后(  )

A.两者的速度均为零

B.两者的速度总不会相等

C.物体的最终速度为

,向右

D.物体的最终速度为

,向右

答案 D

解析 物体与盒子组成的系统所受合外力为零,物体与盒子前后壁多次往复碰撞后,以速度v共同运动,由动量守恒定律得:

mv0=(M+m)v,故v=

,向右.

图1-4-7

3.

质量相等的五个物块在一光滑水平面上排成一条直线,且彼此隔开一定的距离,具有初速度v0的第5号物块向左运动,依次与其余四个静止物块发生碰撞,如图1-4-7所示,最后这五个物块粘成一个整体,求它们最后的速度为多少?

答案 

v0

解析 由五个物块组成的系统,沿水平方向不受外力作用,故系统动量守恒,mv0=5mv,v=

v0,即它们最后的速度为

v0.

动量守恒定律应用中的临界问题

图1-4-8

4.

如图1-4-8所示,甲车质量m1=20kg,车上有质量M=50kg的人,甲车(连同车上的人)以v=3m/s的速度向右滑行.此时质量m2=50kg的乙车正以v0=1.8m/s的速度迎面滑来,为了避免两车相撞,当两车相距适当距离时,人从甲车跳到乙车上,求人跳出甲车的水平速度(相对地面)应当在什么范围以内才能避免两车相撞?

不计地面和小车的摩擦,且乙车足够长.

答案 大于等于3.8m/s

解析 人跳到乙车上后,如果两车同向,甲车的速度小于或等于乙车的速度就可以避免两车相撞.

以人、甲车、乙车组成系统,由水平方向动量守恒得:

(m1+M)v-m2v0=(m1+m2+M)v′,解得v′=1m/s.

以人与甲车为一系统,人跳离甲车过程水平方向动量守恒,得:

(m1+M)v=m1v′+Mu,解得u=3.8m/s.

因此,只要人跳离甲车的速度u≥3.8m/s,就可避免两车相撞.

(时间:

60分钟)

题组一 动量守恒条件及系统和过程的选取

1.在匀速行驶的船上,当船上的人相对于船竖直向上抛出一个物体时,船的速度将(水的阻力不变)(  )

A.变大B.变小

C.不变D.无法判定

答案 C

解析 相对于船竖直向上抛出物体时,由于惯性,物体水平方向仍然具有和船相同的速度,船和物体组成的系统水平方向动量守恒,故船速不变.

图1-4-9

2.

如图1-4-9所示,A、B两木块紧靠在一起且静止于光滑水平面上,物块C以一定的初速度v0从A的左端开始向右滑行,最后停在B木块的右端,对此过程,下列叙述正确的是(  )

A.当C在A上滑行时,A、C组成的系统动量守恒

B.当C在B上滑行时,B、C组成的系统动量守恒

C.无论C是在A上滑行还是在B上滑行,A、B、C三物块组成的系统动量

都守恒

D.当C在B上滑行时,A、B、C组成的系统动量不守恒

答案 BC

解析 当C在A上滑行时,对A、C组成的系统,B对A的作用力为外力,不等于0,故系统动量不守恒,选项A错误;当C在B上滑行时,A、B已分离,对B、C组成的系统,沿水平方向不受外力作用,故系统动量守恒,选项B正确;若将A、B、C三物块视为一系统,则沿水平方向无外力作用,系统动量守恒,选项C正确,选项D错误.

3.

图1-4-10

平板车B静止在光滑水平面上,在其左端另有物体A以水平初速度v0向车的右端滑行,如图1-4-10所示.由于A、B间存在摩擦,因而A在B上滑行后,A开始做减速运动,B做加速运动(设B车足够长),则B车速度达到最大时,应出现在(  )

A.A的速度最小时

B.A、B速度相等时

C.A在B上相对静止时

D.B车开始做匀速直线运动时

答案 ABCD

解析 由于A、B之间存在摩擦力,A做减速运动,B做加速运动,当两个物体的速度相等时,相对静止,摩擦力消失,变速运动结束,此时A的速度最小,B的速度最大,因此选项A、B、C正确,此后A、B一起匀速运动,所以D项正确.

图1-4-11

4.

如图1-4-11所示,在质量为M的小车上挂有一单摆,摆球的质量为m0,小车和摆球以恒定的速度v沿光滑水平地面运动,与位于正对面的质量为m的静止木块发生碰撞,碰撞的时间极短,在此碰撞过程中,下列可能发生的情况是(  )

A.小车、木块、摆球的速度都发生变化,分别变为v1、v2、v3,满足(M+m0)v=Mv1+mv2+m0v3

B.摆球的速度不变,小车和木块的速度分别变为v1、v2,满足Mv=Mv1+mv2

C.摆球的速度不变,小车和木块的速度都变为v′,满足Mv=(M+m)v′

D.小车和摆球的速度都变为v1,木块的速度变为v2,满足(M+m0)v=(M+m0)v1+mv2

答案 BC

图1-4-12

5.如图1-4-12所示,小车放在光滑的水平面上,将系着绳的小球拉开一定的角度,然后同时放开小球和小车,那么在以后的过程中(  )

A.小球向左摆动时,小车也向左运动,且系统动量守恒

B.小球向左摆动时,小车向右运动,且系统动量守恒

C.小球向左摆到最高点,小球的速度为零而小车的速度不为零

D.在任意时刻,小球和小车在水平方向上的动量一定大小相等、方向相反

答案 BD

解析 小球摆动过程中,竖直方向上合力不为零,故系统总动量不守恒,但水平方向不受外力,在水平方向动量守恒,所以选项B、D正确.

6.

图1-4-13

如图1-4-13所示,小车放在光滑水平面上,A、B两人站在车的两端,这两人同时开始相向行走,发现车向左运动,分析小车运动的原因可能是

(  )

A.A、B质量相等,但A比B速率大

B.A、B质量相等,但A比B速率小

C.A、B速率相等,但A比B的质量大

D.A、B速率相等,但A比B的质量小

答案 AC

解析 两人及车组成的系统动量守恒,则mAvA-mBvB-mCvC=0,得mAvA-mBvB>0.所以A、C正确.

题组二 多物体多过程动量守恒定律的应用

7.一弹簧枪对准以6m/s的速度沿光滑桌面迎面滑来的木块发射一颗铅弹,射出速度为10m/s,铅弹射入木块后未穿出,木块继续向前运动,速度变为5m/s.如果想让木块停止运动,并假定铅弹射入木块后都不会穿出,则应再向木块迎面射入的铅弹数为(  )

A.5颗B.6颗C.7颗D.8颗

答案 D

解析 设木块质量为m1,铅弹质量为m2,第一颗铅弹射入,有m1v0-m2v=(m1+m2)v1,代入数据可得

=15,设再射入n颗铅弹木块停止,有(m1+m2)v1-nm2v=0,解得n=8.

8.

图1-4-14

如图1-4-14所示,一轻质弹簧两端连着物体A和B,放在光滑的水平面上,物体A被水平速度为v0的子弹射中并且子弹嵌在其中.已知物体A的质量mA是物体B的质量mB的

,子弹的质量m是物体B的质量的

,求弹簧压缩到最短时B的速度.

答案 

解析 弹簧压缩到最短时,子弹、A、B具有共同的速度v1,且子弹、A、B组成的系统,从子弹开始射入物体A一直到弹簧被压缩到最短的过程中,系统所受外力(重力、支持力)之和始终为零,故整个过程系统的动量守恒,由动量守恒定律得mv0=(m+mA+mB)v1,又m=

mB,mA=

mB,故v1=

即弹簧压缩到最短时B的速度为

.

9.

如图1-4-15所示,在光滑水平面上有两个木块A、B,木块B左端放置小物块C并保持静止,已知mA=mB

图1-4-15

=0.2kg,mC=0.1kg,现木块A以初速度v=2m/s沿水平方向向右滑动,木块A与B相碰后具有共同速度(但不粘连),C与A、B间均有摩擦.求:

(1)木块A与B相碰瞬间A木块及小物块C的速度大小;

(2)设木块A足够长,求小物块C的最终速度.

答案 

(1)1m/s 0 

(2)

m/s 方向水平向右

解析 

(1)木块A与B相碰瞬间C的速度为0,A、B木块的速度相同,由动量守恒定律得

mAv=(mA+mB)vA,vA=

=1m/s.

(2)C滑上A后,摩擦力使C加速,使A减速,直至A、C具有共同速度,以A、C整体为系统,由动量守恒定律得mAvA=(mA+mC)vC,vC=

m/s,方向水平向右.

题组三 综合应用

10.如图1-4-16所示,质量分别为m1和m2的两个等半径小球,在光滑的水平面上分别以速度v1、v2向右运动,并发生对心正碰,碰后m2被墙弹回,与墙碰撞过程中无能量损失,m2返回后又与m1相向碰撞,碰后两球都静止,求第一次碰后m1球的速度.

图1-4-16

答案 

方向向右

解析 设m1、m2碰后的速度大小分别为v1′、v2′,则由动量守恒定律知m1v1+m2v2=m1v1′+m2v2′

m1v1′-m2v2′=0,解得v1′=

,方向向右.

图1-4-17

11.

质量为M=2kg的小平板车静止在光滑水平面上,车的一端静止着质量为mA=2kg的物体A(可视为质点),如图1-4-17所示,一颗质量为mB=20g的子弹以600m/s的水平速度射穿A后,速度变为100m/s,最后物体A相对车静止,若物体A与小车间的动摩擦因数μ=0.5,取g=10m/s2,求平板车最后的速度是多大.

答案 2.5m/s

解析 子弹击穿A后,A在水平方向上获得一个速度vA,最后当A相对车静止时,它们的共同速度为v.子弹射穿A的过程极短,因此车对A的摩擦力、子弹的重力作用可略去,即认为子弹和A组成的系统水平方向动量守恒,同时,由于作用时间极短,可认为A的位置没有发生变化,设子弹击穿A后的速度为v′,由动量守恒定律有mBv0=mBv′+mAvA,得

vA=

m/s=5m/s

A获得速度vA相对车滑动,由于A与车间有摩擦,最后A相对车静止,以共同速度v运动,对于A与车组成的系统,水平方向动量守恒,因此有:

mAvA=(mA+M)v,所以v=

m/s=2.5m/s.

12.

图1-4-18

光滑水平轨道上有三个木块A、B、C,质量分别为mA=3m、mB=mC=m,开始时B、C均静止,A以初速度v0向右运动,A与B碰撞后分开,B又与C发生碰撞并粘在一起,此后A与B间的距离保持不变.求B与C碰撞前B的速度大小.

答案 

v0

解析 设A与B碰撞后,A的速度为vA,B与C碰撞前B的速度为vB,B与C碰撞后粘在一起的速度为v,由动量守恒定律得

对A、B木块:

mAv0=mAvA+mBvB①

对B、C木块:

mBvB=(mB+mC)v②

由A与B间的距离保持不变可知

vA=v③

联立①②③式,代入数据得

vB=

v0④

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 初中作文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1