四、动量守恒定律应用中的临界问题分析
在动量守恒定律的应用中,常常会遇到相互作用的两物体相距最近、避免相碰和物体开始反向运动等临界问题.分析临界问题的关键是寻找临界状态,临界状态的出现是有条件的,这个条件就是临界条件.临界条件往往表现为某个(或某些)物理量的特定取值.在与动量相关的临界问题中,临界条件常常表现为两物体的相对速度关系与相对位移关系,这些特定关系的判断是求解这类问题的关键.
【例3】 如图1-4-4所示,甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他的冰车总质量为M=30kg,乙和他的冰车总质量也是30kg.游戏时,甲推着一个质量为m=15kg的箱子和他一起以v0=2m/s的速度滑行,乙以同样大小的速度迎面滑来,为了避免相撞,甲突然将箱子沿冰面推给乙,箱子滑到乙处,乙迅速抓住.若不计冰面摩擦.
图1-4-4
(1)若甲将箱子以速度v推出,甲的速度变为多少?
(用字母表示)
(2)设乙抓住迎面滑来的速度为v的箱子后反向运动,乙抓住箱子后的速度变为多少?
(用字母表示)
(3)若甲、乙最后不相撞,甲、乙的速度应满足什么条件?
箱子被推出的速度至少多大?
答案
(1)
(2)
(3)v1≤v2 5.2m/s
解析
(1)甲将箱子推出的过程,甲和箱子组成的整体动量守恒,由动量守恒定律得:
(M+m)v0=mv+Mv1①
解得v1=
②
(2)箱子和乙作用的过程动量守恒,以箱子的速度方向为正方向,由动量守恒定律得:
mv-Mv0=(m+M)v2③
解得v2=
④
(3)甲、乙不相撞的条件是v1≤v2⑤
其中v1=v2为甲、乙恰好不相撞的条件.
联立②④⑤三式,并代入数据得
v≥5.2m/s.
某一方向上动量守恒问题
1.
图1-4-5
如图1-4-5所示,在光滑的水平面上有一静止的斜面,斜面光滑,现有一个小球从斜面顶点由静止释放,在小球下滑的过程中,以下说法正确的是( )
A.斜面和小球组成的系统动量守恒
B.斜面和小球组成的系统仅在水平方向上动量守恒
C.斜面向右运动
D.斜面静止不动
答案 BC
解析 球和斜面组成的系统在水平方向上不受外力作用,故水平方向动量守恒.小球下滑时,对地有向下的加速度,即系统存在向下的加速度,故系统竖直方向上所受合外力不为零,合外力向下,因此不能说系统动量守恒.
多物体、多过程中的动量守恒问题
图1-4-6
2.
如图1-4-6所示,质量为M的盒子放在光滑的水平面上,盒子内表面不光滑,盒内放有一块质量为m的物体.从某一时刻起给m一个水平向右的初速度v0,那么在物块与盒子前后壁多次往复碰撞后( )
A.两者的速度均为零
B.两者的速度总不会相等
C.物体的最终速度为
,向右
D.物体的最终速度为
,向右
答案 D
解析 物体与盒子组成的系统所受合外力为零,物体与盒子前后壁多次往复碰撞后,以速度v共同运动,由动量守恒定律得:
mv0=(M+m)v,故v=
,向右.
图1-4-7
3.
质量相等的五个物块在一光滑水平面上排成一条直线,且彼此隔开一定的距离,具有初速度v0的第5号物块向左运动,依次与其余四个静止物块发生碰撞,如图1-4-7所示,最后这五个物块粘成一个整体,求它们最后的速度为多少?
答案
v0
解析 由五个物块组成的系统,沿水平方向不受外力作用,故系统动量守恒,mv0=5mv,v=
v0,即它们最后的速度为
v0.
动量守恒定律应用中的临界问题
图1-4-8
4.
如图1-4-8所示,甲车质量m1=20kg,车上有质量M=50kg的人,甲车(连同车上的人)以v=3m/s的速度向右滑行.此时质量m2=50kg的乙车正以v0=1.8m/s的速度迎面滑来,为了避免两车相撞,当两车相距适当距离时,人从甲车跳到乙车上,求人跳出甲车的水平速度(相对地面)应当在什么范围以内才能避免两车相撞?
不计地面和小车的摩擦,且乙车足够长.
答案 大于等于3.8m/s
解析 人跳到乙车上后,如果两车同向,甲车的速度小于或等于乙车的速度就可以避免两车相撞.
以人、甲车、乙车组成系统,由水平方向动量守恒得:
(m1+M)v-m2v0=(m1+m2+M)v′,解得v′=1m/s.
以人与甲车为一系统,人跳离甲车过程水平方向动量守恒,得:
(m1+M)v=m1v′+Mu,解得u=3.8m/s.
因此,只要人跳离甲车的速度u≥3.8m/s,就可避免两车相撞.
(时间:
60分钟)
题组一 动量守恒条件及系统和过程的选取
1.在匀速行驶的船上,当船上的人相对于船竖直向上抛出一个物体时,船的速度将(水的阻力不变)( )
A.变大B.变小
C.不变D.无法判定
答案 C
解析 相对于船竖直向上抛出物体时,由于惯性,物体水平方向仍然具有和船相同的速度,船和物体组成的系统水平方向动量守恒,故船速不变.
图1-4-9
2.
如图1-4-9所示,A、B两木块紧靠在一起且静止于光滑水平面上,物块C以一定的初速度v0从A的左端开始向右滑行,最后停在B木块的右端,对此过程,下列叙述正确的是( )
A.当C在A上滑行时,A、C组成的系统动量守恒
B.当C在B上滑行时,B、C组成的系统动量守恒
C.无论C是在A上滑行还是在B上滑行,A、B、C三物块组成的系统动量
都守恒
D.当C在B上滑行时,A、B、C组成的系统动量不守恒
答案 BC
解析 当C在A上滑行时,对A、C组成的系统,B对A的作用力为外力,不等于0,故系统动量不守恒,选项A错误;当C在B上滑行时,A、B已分离,对B、C组成的系统,沿水平方向不受外力作用,故系统动量守恒,选项B正确;若将A、B、C三物块视为一系统,则沿水平方向无外力作用,系统动量守恒,选项C正确,选项D错误.
3.
图1-4-10
平板车B静止在光滑水平面上,在其左端另有物体A以水平初速度v0向车的右端滑行,如图1-4-10所示.由于A、B间存在摩擦,因而A在B上滑行后,A开始做减速运动,B做加速运动(设B车足够长),则B车速度达到最大时,应出现在( )
A.A的速度最小时
B.A、B速度相等时
C.A在B上相对静止时
D.B车开始做匀速直线运动时
答案 ABCD
解析 由于A、B之间存在摩擦力,A做减速运动,B做加速运动,当两个物体的速度相等时,相对静止,摩擦力消失,变速运动结束,此时A的速度最小,B的速度最大,因此选项A、B、C正确,此后A、B一起匀速运动,所以D项正确.
图1-4-11
4.
如图1-4-11所示,在质量为M的小车上挂有一单摆,摆球的质量为m0,小车和摆球以恒定的速度v沿光滑水平地面运动,与位于正对面的质量为m的静止木块发生碰撞,碰撞的时间极短,在此碰撞过程中,下列可能发生的情况是( )
A.小车、木块、摆球的速度都发生变化,分别变为v1、v2、v3,满足(M+m0)v=Mv1+mv2+m0v3
B.摆球的速度不变,小车和木块的速度分别变为v1、v2,满足Mv=Mv1+mv2
C.摆球的速度不变,小车和木块的速度都变为v′,满足Mv=(M+m)v′
D.小车和摆球的速度都变为v1,木块的速度变为v2,满足(M+m0)v=(M+m0)v1+mv2
答案 BC
图1-4-12
5.如图1-4-12所示,小车放在光滑的水平面上,将系着绳的小球拉开一定的角度,然后同时放开小球和小车,那么在以后的过程中( )
A.小球向左摆动时,小车也向左运动,且系统动量守恒
B.小球向左摆动时,小车向右运动,且系统动量守恒
C.小球向左摆到最高点,小球的速度为零而小车的速度不为零
D.在任意时刻,小球和小车在水平方向上的动量一定大小相等、方向相反
答案 BD
解析 小球摆动过程中,竖直方向上合力不为零,故系统总动量不守恒,但水平方向不受外力,在水平方向动量守恒,所以选项B、D正确.
6.
图1-4-13
如图1-4-13所示,小车放在光滑水平面上,A、B两人站在车的两端,这两人同时开始相向行走,发现车向左运动,分析小车运动的原因可能是
( )
A.A、B质量相等,但A比B速率大
B.A、B质量相等,但A比B速率小
C.A、B速率相等,但A比B的质量大
D.A、B速率相等,但A比B的质量小
答案 AC
解析 两人及车组成的系统动量守恒,则mAvA-mBvB-mCvC=0,得mAvA-mBvB>0.所以A、C正确.
题组二 多物体多过程动量守恒定律的应用
7.一弹簧枪对准以6m/s的速度沿光滑桌面迎面滑来的木块发射一颗铅弹,射出速度为10m/s,铅弹射入木块后未穿出,木块继续向前运动,速度变为5m/s.如果想让木块停止运动,并假定铅弹射入木块后都不会穿出,则应再向木块迎面射入的铅弹数为( )
A.5颗B.6颗C.7颗D.8颗
答案 D
解析 设木块质量为m1,铅弹质量为m2,第一颗铅弹射入,有m1v0-m2v=(m1+m2)v1,代入数据可得
=15,设再射入n颗铅弹木块停止,有(m1+m2)v1-nm2v=0,解得n=8.
8.
图1-4-14
如图1-4-14所示,一轻质弹簧两端连着物体A和B,放在光滑的水平面上,物体A被水平速度为v0的子弹射中并且子弹嵌在其中.已知物体A的质量mA是物体B的质量mB的
,子弹的质量m是物体B的质量的
,求弹簧压缩到最短时B的速度.
答案
解析 弹簧压缩到最短时,子弹、A、B具有共同的速度v1,且子弹、A、B组成的系统,从子弹开始射入物体A一直到弹簧被压缩到最短的过程中,系统所受外力(重力、支持力)之和始终为零,故整个过程系统的动量守恒,由动量守恒定律得mv0=(m+mA+mB)v1,又m=
mB,mA=
mB,故v1=
=
,
即弹簧压缩到最短时B的速度为
.
9.
如图1-4-15所示,在光滑水平面上有两个木块A、B,木块B左端放置小物块C并保持静止,已知mA=mB
图1-4-15
=0.2kg,mC=0.1kg,现木块A以初速度v=2m/s沿水平方向向右滑动,木块A与B相碰后具有共同速度(但不粘连),C与A、B间均有摩擦.求:
(1)木块A与B相碰瞬间A木块及小物块C的速度大小;
(2)设木块A足够长,求小物块C的最终速度.
答案
(1)1m/s 0
(2)
m/s 方向水平向右
解析
(1)木块A与B相碰瞬间C的速度为0,A、B木块的速度相同,由动量守恒定律得
mAv=(mA+mB)vA,vA=
=1m/s.
(2)C滑上A后,摩擦力使C加速,使A减速,直至A、C具有共同速度,以A、C整体为系统,由动量守恒定律得mAvA=(mA+mC)vC,vC=
m/s,方向水平向右.
题组三 综合应用
10.如图1-4-16所示,质量分别为m1和m2的两个等半径小球,在光滑的水平面上分别以速度v1、v2向右运动,并发生对心正碰,碰后m2被墙弹回,与墙碰撞过程中无能量损失,m2返回后又与m1相向碰撞,碰后两球都静止,求第一次碰后m1球的速度.
图1-4-16
答案
方向向右
解析 设m1、m2碰后的速度大小分别为v1′、v2′,则由动量守恒定律知m1v1+m2v2=m1v1′+m2v2′
m1v1′-m2v2′=0,解得v1′=
,方向向右.
图1-4-17
11.
质量为M=2kg的小平板车静止在光滑水平面上,车的一端静止着质量为mA=2kg的物体A(可视为质点),如图1-4-17所示,一颗质量为mB=20g的子弹以600m/s的水平速度射穿A后,速度变为100m/s,最后物体A相对车静止,若物体A与小车间的动摩擦因数μ=0.5,取g=10m/s2,求平板车最后的速度是多大.
答案 2.5m/s
解析 子弹击穿A后,A在水平方向上获得一个速度vA,最后当A相对车静止时,它们的共同速度为v.子弹射穿A的过程极短,因此车对A的摩擦力、子弹的重力作用可略去,即认为子弹和A组成的系统水平方向动量守恒,同时,由于作用时间极短,可认为A的位置没有发生变化,设子弹击穿A后的速度为v′,由动量守恒定律有mBv0=mBv′+mAvA,得
vA=
=
m/s=5m/s
A获得速度vA相对车滑动,由于A与车间有摩擦,最后A相对车静止,以共同速度v运动,对于A与车组成的系统,水平方向动量守恒,因此有:
mAvA=(mA+M)v,所以v=
=
m/s=2.5m/s.
12.
图1-4-18
光滑水平轨道上有三个木块A、B、C,质量分别为mA=3m、mB=mC=m,开始时B、C均静止,A以初速度v0向右运动,A与B碰撞后分开,B又与C发生碰撞并粘在一起,此后A与B间的距离保持不变.求B与C碰撞前B的速度大小.
答案
v0
解析 设A与B碰撞后,A的速度为vA,B与C碰撞前B的速度为vB,B与C碰撞后粘在一起的速度为v,由动量守恒定律得
对A、B木块:
mAv0=mAvA+mBvB①
对B、C木块:
mBvB=(mB+mC)v②
由A与B间的距离保持不变可知
vA=v③
联立①②③式,代入数据得
vB=
v0④