习题水文统计.docx
《习题水文统计.docx》由会员分享,可在线阅读,更多相关《习题水文统计.docx(19页珍藏版)》请在冰豆网上搜索。
习题水文统计
第四章 水文统计
本章学习的内容和意义:
本章应用数理统计的方法寻求水文现象的统计规律,在水文学中常被称为水文统计,包括频率计算和相关分析。
频率计算是研究和分析水文随机现象的统计变化特性,并以此为基础对水文现象未来估计的长期变化作出在概率意义下的定量预估,以满足水利水电工程规划、设计、施工和运行管理的需要。
相关分析又叫回归分析,在水利水电工程规划设计中常用于展延样本系列以提高样本的代表性,同时,也广泛应用于水文预报。
本章习题内容主要涉及:
概率、频率计算,概率加法,概率乘法;随机变量及其统计参数的计算;理论频率曲线(正态分布,皮尔逊III型分布等)、经验频率曲线的确定;频率曲线参数的初估方法(矩法,权函数法,三点法等);水文频率计算的适线法;相关系数、回归系数、复相关系数、均方误的计算;两变量直线相关(直线回归)、曲线相关的分析方法;复相关(多元回归)分析法。
一、概念题
(一)填空题
1、必定现象是指__ 事物在发展变化中必定会出现的现象____________。
2、偶然现象是指 事物在发展变化中估计出现也估计不出现的 。
3、概率是指 某一事件在总体中的出现机会 。
4、频率是指 某一事件在样本中的出现机会 、
5、两个互斥事件A、B出现的概率P(A+B)等于 。
6、两个独立事件A、B共同出现的概率P(AB)等于 。
7、关于一个统计系列,当Cs=0时称为 正态分布 ;当Cs﹥0时称为 正偏态分布 ;当Cs
﹤0时称为 负偏态分布 。
8、分布函数F(X)代表随机变量X 大于等于 某一取值x的概率。
9、x、y两个系列,它们的变差系数分别为CV x、CV y,已知CV x>CVy,说明x系列较y系列的离散程度 大。
10、正态频率曲线中包含的两个统计参数分别是 , 。
11、离均系数Φ的均值为 ,标准差为 。
12、皮尔逊III型频率曲线中包含的三个统计参数分别是均值x , 离势系数Cv ,偏态系数Cs 。
13、计算经验频率的数学期望公式为P=m/n+1*100% 、
14、供水保证率为90%,其重现期为 10 年。
15、发电年设计保证率为95%,相应重现期则为 20 年、
16、重现期是指 。
17、百年一遇的洪水是指 。
18、十年一遇的枯水年是指 。
19、设计频率是指 ,设计保证率是指 。
20、某水库设计洪水为百年一遇,十年内出现等于大于设计洪水的概率是 ,十年内有连续二年出现等于大于设计洪水的概率是 、
21、频率计算中,用样本估计总体的统计规律时必定产生 ,统计学上称之为 。
22、水文上研究样本系列的目的是用样本的 。
23、抽样误差是指 。
24、在洪水频率计算中,总希望样本系列尽量长些,其原因是 。
25、用三点法初估均值和Cv、Cs时,一般分以下两步进行:
(1) ;
(2) 、
26、权函数法属于单参数估计,它所估算的参数为 、
27、关于我国大多数地区,频率分析中配线时选定的线型为 。
28、皮尔逊III型频率曲线,当、Cs不变,减小Cv值时,则该线 。
29、皮尔逊III型频率曲线,当、Cv不变,减小Cs值时,则该线 。
30、皮尔逊III型频率曲线,当Cv、Cs不变,减小值时,则该线 。
31、频率计算中配线法的实质是 、
32、相关分析中,两变量的关系有 , 和 三种情况、
33、相关的种类通常有 , 和 。
34、在水文分析计算中, 相关分析的目的是 、
35、确定y倚x的相关线的准则是 。
36、相关分析中两变量具有幂函数(y=axb)的曲线关系,此时回归方程中的参数一般采纳 ________________的方法确定、
37、水文分析计算中,相关分析的先决条件是 。
38、相关系数r表示 。
39、利用y倚x的回归方程展延资料是以 为自变量,展延 。
(二)选择题
1、水文现象是一种自然现象,它具有[]、
a、不估计性b、偶然性 c、必定性 d、既具有必定性,也具有偶然性
2、水文统计的任务是研究和分析水文随机现象的[ ]。
a、必定变化特性 b、自然变化特性c、统计变化特性 d、估计变化特性
3、在一次随机试验中估计出现也估计不出现的事件叫做[]。
a、必定事件 b、不估计事件c、随机事件 d、独立事件
4、一棵骰子投掷一次,出现4点或5点的概率为[ ]。
a、 b、c、 d、
5、一棵骰子投掷8次,2点出现3次,其概率为[]、
a、 b、 c、 d、
6、必定事件的概率等于[]、
a、1 b、0 c、0~1 d、0、5
7、一阶原点矩就是[ ]。
a、算术平均数 b、均方差 c、变差系数 d、偏态系数
8、二阶中心矩就是[ ]、
a、算术平均数 b、均方差 c、方差 d、变差系数
9、偏态系数Cs﹥0,说明随机变量x [ ]、
a、出现大于均值的机会比出现小于均值的机会多
b、出现大于均值的机会比出现小于均值的机会少
c、出现大于均值的机会和出现小于均值的机会相等
d、出现小于均值的机会为0
10、水文现象中,大洪水出现机会比中、小洪水出现机会小,其频率密度曲线为[]。
a、负偏 b、对称 c、正偏d、双曲函数曲线
11、变量x的系列用模比系数K的系列表示时,其均值等于[ ]。
a、b、1 c、σ d、0
12、在水文频率计算中,我国一般选配皮尔逊III型曲线,这是因为[ ]。
a、已从理论上证明它符合水文统计规律
b、已制成该线型的Φ值表供查用,使用方便
c、已制成该线型的kp值表供查用,使用方便
d、经验表明该线型能与我国大多数地区水文变量的频率分布配合良好
13、正态频率曲线绘在频率格纸上为一条[ ]。
a、直线 b、S型曲线 c、对称的铃型曲线 d、不对称的铃型曲线
14、正态分布的偏态系数[]。
a、Cs=0b、Cs﹥0 c、Cs﹤0 d、Cs﹦1
15、两参数对数正态分布的偏态系数[]。
a、Cs=0 b、Cs﹥0 c、Cs﹤0 d、Cs﹦1
16、P=5%的丰水年,其重现期T等于[ ]年。
a、5 b、50 c、20 d、95
17、P=95%的枯水年,其重现期T等于[ ]年。
a、95 b、50c、5 d、20
18、百年一遇洪水,是指[ ]。
a、大于等于如此的洪水每隔100年必定会出现一次
b、大于等于如此的洪水平均100年估计出现一次
c、小于等于如此的洪水正好每隔100年出现一次
d、小于等于如此的洪水平均100年估计出现一次
19、重现期为一千年的洪水,其含义为[]。
a、大于等于这一洪水的事件正好一千年出现一次
b、大于等于这一洪水的事件特别长时间内平均一千年出现一次
c、小于等于这一洪水的事件正好一千年出现一次
d、小于等于这一洪水的事件特别长时间内平均一千年出现一次
20、无偏估值是指[ ]。
a、由样本计算的统计参数正好等于总体的同名参数值
b、无穷多个同容量样本参数的数学期望值等于总体的同名参数值
c、抽样误差比较小的参数值
d、长系列样本计算出来的统计参数值
21、用样本的无偏估值公式计算统计参数时,则[ ]。
a、计算出的统计参数就是相应总体的统计参数
b、计算出的统计参数近似等于相应总体的统计参数
c、计算出的统计参数与相应总体的统计参数无关
d、以上三种说法都不对
22、皮尔逊III型频率曲线的三个统计参数、Cv、Cs 值中,为无偏估计值的参数是[ ]。
a、 b、Cv c、Cs d、Cv和Cs
23、减少抽样误差的途径是[ ]。
a、增大样本容 b、提高观测精度 c、改进测验仪器d、提高资料的一致性
24、权函数法属于单参数估计,它所估算的参数为[ ]。
a、 b、σc、Cv d、Cs
25、如图1—4-1,为两条皮尔逊III型频率密度曲线,它们的Cs [ ]、
a、Cs1﹤0,Cs2﹥0 b、Cs1﹥0,Cs2﹤0c、Cs1﹦0,Cs2﹦0 d、Cs1﹦0,Cs2﹥0
图1-4—1 皮尔逊III型频率密度曲线
26、如图1-4-2,为不同的三条概率密度曲线,由图可知[ ]、
图1-4—2概率密度曲线
a、Cs1>0,Cs2〈0,Cs3=0 b、Cs1<0,Cs2 >0,Cs3=0
c、Cs1=0,Cs2 〉0,Cs3<0d、Cs1>0,Cs2 =0,Cs3<0
27、如图1-4-3,若两频率曲线的、Cs值分别相等,则二者Cv[]。
图1-4-3Cv值相比较的两条频率曲线
a、Cv1﹥Cv2 b、Cv1﹤Cv2 c、Cv1﹦Cv2 d、Cv1﹦0,Cv2﹥0
28、如图1-4-4,绘在频率格纸上的两条皮尔逊III型频率曲线,它们的、Cv值分别相等,则二者的Cs[]。
a、Cs1﹥Cs2b、Cs1﹤Cs2 c、Cs1﹦Cs2 d、Cs1﹦0,Cs2﹤0
图1—4-4CS值相比较的两条频率曲线
29、如图1-4-5,若两条频率曲线的Cv、Cs值分别相等,则二者的均值、相比较,[]、
图 1-4-5 均值相比较的两条频率曲线
a、﹤ b、﹥ c、= d、=0
30、如图1-4—6,为以模比系数k绘制的皮尔逊III型频率曲线,其Cs值[ ]。
图 1-4—6 皮尔逊III型频率曲线
a、等于2Cv b、小于2Cv c、大于2Cv d、等于0
31、如图1-4—7,为皮尔逊III型频率曲线,其Cs值[]。
图1-4-7 皮尔逊III型频率曲线
a、小于2Cv b、大于2Cv c、等于2Cv d、等于0
32、某水文变量频率曲线,当、Cv不变,增大Cs值时,则该线[]、
a、两端上抬、中部下降 b、向上平移
c、呈顺时针方向转动 d、呈反时针方向转动
33、某水文变量频率曲线,当、Cs不变,增加Cv值时,则该线[ ]、
a、将上抬 b、将下移
c、呈顺时针方向转动 d、呈反时针方向转动
34、皮尔逊III型曲线,当Cs≠0时,为一端有限,一端无限的偏态曲线,其变量的最小值a0=(1—2Cv/Cs);由此可知,水文系列的配线结果一般应有[ ]。
a、Cs〈2Cv b、Cs=0 c、Cs≤2Cv d、Cs≥2Cv
35、用配线法进行频率计算时,判断配线是否良好所遵循的原则是[ ]。
a、抽样误差最小的原则 b、统计参数误差最小的原则
c、理论频率曲线与经验频率点据配合最好的原则 d、设计值偏于安全的原则
36、已知y倚x的回归方程为:
则x倚y的回归方程为[ ]。
a、 b、
c、 d、
37、相关系数r的取值范围是[ ]。
a、r﹥0; b、r﹤0 c、r=-1 ~ 1 d、r=0~1
38、相关分析在水文分析计算中主要用于 []、
a、推求设计值b、推求频率曲线 c、计算相关系数d、插补、延长水文系列
39、有两个水文系列,经直线相关分析,得倚的相关系数仅为0。
2,但大于临界相关系数,这说明[]。
a、与相关紧密 b、与不相关
c、与直线相关关系不紧密d、与一定是曲线相关
(三)判断题
1、由随机现象的一部分试验资料去研究总体现象的数字特征和规律的学科称为概率论。
[ ]
2、偶然现象是指事物在发展、变化中估计出现也估计不出现的现象。
[]
3、在每次试验中一定会出现的事件叫做随机事件。
[]
4、随机事件的概率介于0与1之间。
[ ]
5、x、y两个系列的均值相同,它们的均方差分别为σx、σy,已知σx>σy,说明x系列较y系列的离散程度大。
[ ]
6、统计参数Cs是表示系列离散程度的一个物理量。
[ ]
7、均方差σ是衡量系列不对称(偏态)程度的一个参数、[ ]
8、变差系数CV是衡量系列相对离散程度的一个参数。
[]
9、我国在水文频率分析中选用皮尔逊III型曲线,是因为差不多从理论上证明皮尔逊III型曲线符合水文系列的概率分布规律、[ ]
10、正态频率曲线在普通格纸上是一条直线。
[]
11、正态分布的密度曲线与x轴所围成的面积应等于1。
[]
12、皮尔逊III型频率曲线在频率格纸上是一条规则的S型曲线。
[ ]
13、在频率曲线上,频率P愈大,相应的设计值xp就愈小。
[ ]
14、重现期是指某一事件出现的平均间隔时间。
[]
15、百年一遇的洪水,每100年必定出现一次。
[ ]
16、改进水文测验仪器和测验方法,能够减小水文样本系列的抽样误差。
[]
17、由于矩法计算偏态系数Cs的公式复杂,因此在统计参数计算中不直截了当用矩法公式推求Cs值。
[ ]
18、由样本估算总体的参数,总是存在抽样误差,因而计算出的设计值也同样存在抽样误差。
[ ]
19、水文系列的总体是无限长的,它是客观存在的,但我们无法得到它。
[]
20、权函数法属于单参数估计,不能全面地解决皮尔逊III型频率曲线参数估计问题。
[ ]
21、水文频率计算中配线时,增大Cv能够使频率曲线变陡、[ ]
22、给经验频率点据选配一条理论频率曲线,目的之一是便于频率曲线的外延。
[ ]
23、某水文变量频率曲线,当、Cs不变,增加Cv值时,则该线呈反时针方向转动、[ ]
24、某水文变量频率曲线, 当、Cv不变,增大Cs值时,则该线两端上抬,中部下降。
[]
25、某水文变量频率曲线,当Cv、Cs不变,增加值时,则该线上抬。
[]
26、相关系数是表示两变量相关程度的一个量,若r=—0﹒95,说明两变量没有关系。
[ ]
27、y倚x的直线相关其相关系数r<0、4,能够肯定y与x关系不紧密。
[ ]
28、相关系数也存在着抽样误差。
[ ]
29、y倚x的回归方程与x倚y的回归方程,两者的回归系数总是相等的。
[ ]
30、y倚x的回归方程与x倚y的回归方程,两者的相关系数总是相等的、[ ]
31、已知y倚x的回归方程为 y=Ax+B,则可直截了当导出x倚y的回归方程为 。
[ ]
32、相关系数反映的是相关变量之间的一种平均关系、[ ]
(四)问答题
1、什么是偶然现象?
有何特点?
2、何谓水文统计?
它在工程水文中一般解决什么问题?
3、概率和频率有什么区别和联系?
4、两个事件之间存在什么关系?
相应出现的概率为多少?
5、分布函数与密度函数有什么区别和联系?
6、不及制累积概率与超过制累积概率有什么区别和联系?
7、什么叫总体?
什么叫样本?
为什么能用样本的频率分布推估总体的概率分布?
8、统计参数、σ、Cv、Cs的含义如何?
9、正态分布的密度曲线的特点是什么?
10、水文计算中常用的“频率格纸”的坐标是如何分划的?
11、皮尔逊III型概率密度曲线的特点是什么?
12、何谓离均系数Φ?
如何利用皮尔逊III型频率曲线的离均系数Φ值表绘制频率曲线?
13、何谓经验频率?
经验频率曲线如何绘制?
14、重现期(T)与频率(P)有何关系?
P= 90%的枯水年,其重现期(T)为多少年?
含义是什么?
15、什么叫无偏估计量?
样本的无偏估计量是否就等于总体的同名参数值?
为什么?
16、按无偏估计量的意义,求证样本平均数的无偏估计量?
17、权函数法为什么能提高偏态系数Cs的计算精度?
18、简述三点法的具体作法与步骤?
19、何谓抽样误差?
如何减小抽样误差?
20、在频率计算中,为什么要给经验频率曲线选配一条“理论"频率曲线?
21、为什么在水文计算中广泛采纳配线法?
22、现行水文频率计算配线法的实质是什么?
简述配线法的方法步骤?
23、统计参数、Cv、Cs含义及其对频率曲线的影响如何?
24、用配线法绘制频率曲线时,如何判断配线是否良好?
25、何谓相关分析?
如何分析两变量是否存在相关关系?
26、如何进行水文相关分析?
它在水文上解决哪些问题?
27、为什么要对相关系数进行显著性检验?
如何检验?
28、为什么相关系数能说明相关关系的紧密程度?
29、当y倚x为曲线相关时,如y=a xb ,如何用实测资料确定参数a和b?
30、什么叫回归线的均方误?
它与系列的均方差有何不同?
31、什么是抽样误差?
回归线的均方误是否为抽样误差?
二、计算题
1、在1000次化学实验中,成功了50次,成功的概率和失败的概率各为多少?
两者有何关系?
2、掷一颗骰子,出现3点、4点或5点的概率是多少?
3、一颗骰子连掷2次,2次都出现6点的概率为多少?
若连掷3次,3次都出现5点的概率是多少?
4、一个离散型随机变量X,估计取值为10,3,7,2,5,9,4,同时取值是等概率的。
每一个值出现的概率为多少?
大于等于5的概率为多少?
5、一个离散型随机变量X,估计取值为10,3,7,2,5,9,4,同时取值是等概率的、每一个值出现的概率为多少?
小于等于4的概率为多少?
6、一个离散型随机变量X,其概率分布如表1-4—1,?
小于等于4的概率为多少?
大于等于5的概率又为多少?
表1—4-1 随机变量的分布列
X
3
4
5
6
7
8
P(X=xi)
7、随机变量X系列为10,17,8,4,9,试求该系列的均值、模比系数k、均方差σ、变差系数Cv、偏态系数Cs?
8、随机变量X系列为100,170,80,40,90,试求该系列的均值、模比系数k、均方差σ、变差系数Cv、偏态系数Cs?
9、某站年雨量系列符合皮尔逊III型分布,经频率计算已求得该系列的统计参数:
均值=900mm,Cv =0﹒20,Cs=0﹒60、试结合表1—4-2推求百年一遇年雨量?
表1-4—2P—III型曲线ф值表
P(%)
CS
1
10
50
90
95
0、30
2、54
1。
31
-0。
05
—1。
24
-1。
55
0、60
2、75
1、33
—0。
10
-1。
20
-1。
45
10、某水库,设计洪水频率为1%,设计年径流保证率为90%,分别计算其重现期?
说明两者含义有何差别?
11、设有一数据系列为1、3、5、7,用无偏估值公式计算系列的均值、离势系数Cv、偏态系数Cs,并指出该系列属正偏、负偏依然正态?
12、设有一水文系列:
300、200、185、165、150,试用无偏估值公式计算均值、均方差σ、离势系数Cv、偏态系数Cs?
13、已知x系列为90、100、110,y系列为5、10、15,试用无偏估值公式计算并比较两系列的绝对离散程度和相对离散程度?
14、某站共有18年实测年径流资料列于表1-4-3,试用矩法的无偏估值公式估算其均值、均方差σ、变差系数Cv、偏态系数Cs ?
表1—4-3 某站年径流深资料
年份
1967
1968
1969
1970
1971
1972
R(mm)
1500。
0
959、8
1112、3
1005、6
780、0
901、4
年份
1973
1974
1975
1976
1977
1978
R(mm)
1019。
4
817、9
89897、2
1158、9
1165。
3
835。
8
年份
1979
1980
1981
1982
1983
1984
R(mm)
641。
9
1112、3
527。
5
1133、5
898、3
957。
6
15、依照某站18年实测年径流资料估算的统计参数=969、7mm,σ=233、0mm ,Cv=0、23,Cs=0。
23,计算它们的均方误?
16、依照某站18年实测年径流资料(表1—4—3),计算年径流的经验频率?
17、依照某站18年实测年径流资料(表1-4-3),试用权函数法估算其偏态系数Cs ?
18、某水文站31年的年平均流量资料列于表1—4-4,通过计算已得到∑Qi = 26447,∑(Ki—1)2= 13、0957,∑(Ki-1)3 =8、9100,试用矩法的无偏估值公式估算其均值、均方差σ、变差系数Cv、偏态系数Cs ?
表1—4-4某水文站历年年平均流量资料
年份
流流量Qi(m3/s)
年份
流量Qi(m3/s)
年份
流量Qi(m3/s)
年份
流量Qi(m3/s)
1965
1966
1967
1968
1969
1970
1971
1972
1676
601
562
697
407
2259
402
777
1973
1974
1975
1976
1977
1978
1979
1980
614
490
990
597
214
196
929
1828
1981
1982
1983
1984
1985
1986
1987
1988
343
413
493
372
214
1117
761
980
1989
1990
1991
1992
1993
1994
1995
1029
1463
540
1077
571
1995
1840
19、依照某水文站31年的年平均流量资料(表1-4-4),计算其经验频率?
20、某枢纽处共有21年的实测年最大洪峰流量资料列于表1-4—5,通过计算已得到∑Qi=26170,∑(Ki-1)2 =4。
2426,∑(Ki—1)3= 1。
9774,试用矩法的无偏估值公式估算其均值、均方差σ、变差系数Cv、偏态系数Cs?
表1—4-5某枢纽处的实测年最大洪峰流量资料
年份
1945
1946
1947
1948
1949
1950
1951
Qi(m3/s)
1540
980
1090
1050
1860
1140
980
年份
1952
1953
1954
1955
1956
1957
1958
Qi(m3/s