直线和圆基础习题和经典习题加答案.docx

上传人:b****3 文档编号:26922466 上传时间:2023-06-24 格式:DOCX 页数:9 大小:20.49KB
下载 相关 举报
直线和圆基础习题和经典习题加答案.docx_第1页
第1页 / 共9页
直线和圆基础习题和经典习题加答案.docx_第2页
第2页 / 共9页
直线和圆基础习题和经典习题加答案.docx_第3页
第3页 / 共9页
直线和圆基础习题和经典习题加答案.docx_第4页
第4页 / 共9页
直线和圆基础习题和经典习题加答案.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

直线和圆基础习题和经典习题加答案.docx

《直线和圆基础习题和经典习题加答案.docx》由会员分享,可在线阅读,更多相关《直线和圆基础习题和经典习题加答案.docx(9页珍藏版)》请在冰豆网上搜索。

直线和圆基础习题和经典习题加答案.docx

直线和圆基础习题和经典习题加答案

【知识网络】

综合复习和应用直线xx的基础知识,解决对称问题、轨迹问题、最值问题,以及直线与圆和其他数学知识的综合问题,提高分析问题和解决问题能力.

【典型例题】

[例1]

(1)直线x+y=1与圆x2+y2-2ay=0(a>0)没有公共点,则a的取值范围是()

A.(0,-1)B.(-1,+1)

C.(--1,-1)D.(0,+1

(2)圆(x-1)2+(y+)2=1的切线方程中有一个是()

A.x-y=0B.x+y=.x=0D.y=0

(3)“a=b”是“直线”的()

A.充分不必要条件B.必要不充分条件

C.充分必要条件D.既不充分又不必要条件

(4)已知直线5x+12y+a=0与圆x2+y2-2x=0相切,则a的值为.

(5)过点(1,)的直线l将圆(x-2)2+y2=4分成两段弧,当弧所对的圆心角最小时,直线l的斜率k=.

[例2]设圆上点A(2,3)关于直线x+2y=0的对称点仍在圆上,且圆与直线x-y+1=0相交的弦长为2,求圆的方程.

[例3]已知直角坐标平面上点Q(2,0)和圆C:

x2+y2=1,动点M到圆C的切线长与|MQ|的比等于λ(λ>0).求动点M的轨迹方程,并说明它表示什么曲线.

[例4]已知与曲线C:

x2+y2-2x-2y+1=0相切的直线l叫x轴,y轴于A,B两点,|OA|=a,|OB|=b(a>2,b>2).

(1)求证:

(a-2)(b-2)=2;

(2)求线段AB中点的轨迹方程;

(3)求△AOB面积的最小值.

【课内练习】

1.过坐标原点且与圆x2+y2-4x+2y+=0相切的直线的方程为()

A.y=-3x或y=xB.y=3x或y=-x

C.y=-3x或y=-xD.y=3x或y=x

2.圆(x-2)2+y2=5关于原点(0,0)对称的圆的方程为()

A.(x+2)2+y2=5B.x2+(y-2)2=5

C.(x-2)2+(y-2)2=5D.x2+(y+2)2=5

3.对曲线|x|-|y|=1围成的图形,下列叙述不正确的是()

A.关于x轴对称B.关于y轴对称C.关于原点轴对称D.关于y=x轴对称

4.直线l1:

y=kx+1与圆x2+y2+kx-y-4=0的两个交点关于直线l2:

y+x=0对称,那么这两个交点中有一个是()

A.(1,2)B.(-1,2)C.(-3,2)D.(2,-3)

5.若直线y=kx+2与圆(x-2)2+(y-3)2=1有两个不同的交点,则k的取值范围是.

6.已知直线ax+by+c=0与圆O:

x2+y2=1相交于A、B两点,且|AB|=,则 =.

7.直线l1:

y=-2x+4关于点M(2,3)的对称直线方程是.

8.求直线l1:

x+y-4=0关于直线l:

4y+3x-1=0对称的直线l2的方程.

9.已知圆C:

x2+y2+2x-4y+3=0

(1)若C的切线在x轴,y轴上的截距的绝对值相等,求此切线方程;

(2)从圆C外一点P(x1,y1)xx一条切线,切点为M,O为原点,且有|PM|=|PO|,求使|PM|最小的P点的坐标.

0.由动点P引圆x2+y2=10的两条切线PA,PB,直线PA,PB的斜率分别为k1,

2.

(1)若k1+k2+k1k2=-1,求动点P的轨迹方程;

(2)若点P在直线x+y=mxx,且PA⊥PB,求实数m的取值范围.

1.5直线与圆的综合应用

A组

1.设直线过点(0,a),其斜率为1,且与圆x2+y2=2相切,则a的值为()

A.±B.±.±2D.±4

2.将直线2x-y+λ=0,沿x轴向左平移1个单位,所得直线与圆x2+y2+2x-4y=0相切,则实数λ的值为

A.-3或7B.-2或C.0或10D.1或11

3.从原点向圆x2+y2-12y+27=0作两条切线,则该圆夹在两条切线间的劣弧长为()

A.πB.2πC.4πD.6π

4.若三点A(2,2),B(a,0),C(0,b)(a,b均不为0)共线,则的值等于.

5.设直线ax-y+3=0与圆(x-1)2+(y-2)2=4有两个不同的交点A,B,且弦AB的长为2,则a等于.

6.光线经过点A(1,),经直线l:

x+y+1=0反射,反射线经过点B(1,1).

(1)求入射线所在的方程;

(2)求反射点的坐标.

7.在△ABCxx,BC边上的高所在的直线方程为x-2y+1=0,∠A的平分线所在直线方程为y=0,若B点的坐标为(1,2),求点A和点C的坐标.

8.过圆O:

x2+y2=4与y轴正半轴的交点A作这个圆的切线l,M为lxx任意一点,过M作圆O的另一条切线,切点为Q,当点M在直线lxx移动时,求△MAQ垂心H的轨迹方程.

B组

1.已知两定点A(-2,0),B(1,0),如果动点P满足|PA|=2|PB|,则点P的轨迹所包围的图形的面积等于()

A.πB.4πC.8πD.9π

2.和x轴相切,且与圆x2+y2=1外切的圆的圆心的轨迹方程是()

A.x2=2y+1B.x2=-2y+.x2=2y-1D.x2=2|y|+1

3.设直线的方程是,从1,2,3,4,5这五个数中每次取两个不同的数作为A、B的值,则所得不同直线的条数是()

A.20 B.19C.18D.16

4.设直线和圆相交于点A、B,则弦AB的垂直平分线方程是.

5.已知圆M:

(x+cosθ)2+(y-sinθ)2=1,直线l:

y=kx,下面四个命题

A.对任意实数k和θ,直线l和圆M都相切;

B.对任意实数k和θ,直线l和圆M有公共点;

C.对任意实数θ,必存在实数k,使得直线l和圆M相切;

D.对任意实数k,必存在实数θ,使得直线l和圆M相切.

其中真命题的代号是(写出所有真命题的代号).

6.已知点A,B的坐标为(-3,0),(3,0),C为线段AB上的任意一点,P,Q是分别以AC,BC为直径的两圆O1,O2的外公切线的切点,求PQ中点的轨迹方程.

7.已知△ABC的顶点A(-1,-4),且∠B和∠C的平分线分别为lBT:

y+1=0,lCK:

x+y+1=0,求BC边所在直线的方程.

8.设a,b,c,都是整数,过圆x2+y2=(+1)2外一点P(b3-b,c3-c)xx两条切线,试证明:

过这两切点的直线上的任意一点都不是格点(纵横坐标均为整数的点).

1.5直线与圆的综合应用

【典型例题】

例1

(1)A.提示:

用点到直线的距离公式.

(2)C.提示:

依据圆心和半径判断.

(3)A.提示:

将直线与圆相切转化成关于ab的等量关系.

(4)-18

8.提示:

用点到直线的距离公式,注意去绝对值符号时的两种可能情况.

(5).提示:

过圆心(2,0)与点(1,)的直线m的斜率是-,要使劣弧所对圆心角最小,只需直线l与直线m垂直.

2、设圆的方程为(x-a)2+(y-b)2=r2,点A(2,3)关于直线x+2y=0的对称点仍在圆xx,说明圆心在直线x+2y=0xx,a+2b=0,又(2-a)2+(3-b)2=r2,而圆与直线x-y+1=0相交的弦长为2,,故r2-()2=2,依据xx述方程解得:

∴所求圆的方程为(x-6)2+(y+3)2=52,或(x-14)2+(y+7)2

224.

3、设切点为N,则|MN|2=|MO|2-|ON|2=|MO|2-1,设M(x,y),则,整理得(λ2-1)(x2+y2)-4λx+(1+4λ2)=0

当λ=1时,表示直线x=;

当λ≠1时,方程化为,它表示圆心在,半径为的一个圆.

4、

(1)设出直线方程的截距式,用点到直线的距离等于1,化减即得;

(2)设AB中点M(x,y),则a=2x,b=2y,代入(a-2)(b-2)=2,得(x-1)(y-1)=(x>1,y>1);

(3)由(a-2)(b-2)=2得ab+2=2(a+b)≥4,解得≥2+(≤2-不合,舍去),当且仅当a=b时,ab取最小值6+4,△AOB面积的最小值是3

2.

【课内练习】

1.A.提示:

依据圆心到直线的距离求直线的斜率.

2.D.提示:

求圆心关于原点的对称点.

3.C.提示:

画xx看,或考虑有关字母替代规律.

4.A.提示:

圆心在直线l2xx.

5.0<k<.提示:

直接用点到直线的距离公式或用△法.

6..提示:

求弦所对圆心角.

7.2x+y-10

0.提示:

所求直线上任意一点(x,y)关于(2,3)的对称点(4-x,6-y)在已知直线上.

8.2x+11y+16

0.提示:

求出两直线的交点,再求一个特殊点关于l的对称点,用两点式写l2的方程;或直接设l2xx的任意一点,求其关于l的对称点,对称点在直线l1xx.求对称点时注意,一是垂直,二是平分.

9.

(1)提示:

∵切线在x轴,y轴上的截距的绝对值相等,∴切线的斜率是

1.分别依据斜率设出切线的斜率,用点到直线的距离公式,或△法,解得切线的方程为:

x+y-3=0,x+y+1=0,x-y+5=0,x-y+1

0.

(2)将圆的方程化成标准式(x+1)2+(y-2)2=2,圆心C(-1,2),半径r=,

∵切线PM与CM垂直,∴|PM|2=|PC|2-|CM|2,

又∵|PM|=|PO|,坐标代入化简得2x1-4y1+3

0.

|PM|最小时即|PO|最小,而|PO|最小即P点到直线2x1-4y1+3=0的距离,即.

从而解方程组,得满足条件的点P坐标为(-,).

0.

(1)由题意设P(x0,y0)在圆外,切线l:

y-y0=k(x-x0),,

∴(x02-10)k2-2x0·y0k+y02-10=0

由k1+k2+k1k2=-1得点P的轨迹方程是x+y±2

0.

(2)∵P(x0,y0)在直线x+y=mxx,∴y0=m-x0,又PA⊥PB,∴k1k2=-1,,即:

x02+y02=20,将y0=m-x0代入化简得,2x02-2mx0+m2-20=0

∵△≥0,∴-2≤m≤2,又∵x02+y02>10恒成立,∴m>2,或m<-2

∴m的取值范围是[-2,-2]∪(2,2]

1.5直线与圆的综合应用

A组

1.B.提示:

用点到直线的距离公式或用△法.

2.A.提示:

先求出向左平移后直线的方程,再用点到直线的距离公式.

3.B.提示:

考虑切线的斜率及劣弧所对圆心角.

4..提示:

由三点共线得两两连线斜率相等,+2b=ab,两边同除以ab即可.

5

0.提示:

依据半径、弦长、弦心距的关系求解.

6.

(1)入射线所在直线的方程是:

5x-4y+2=0;

(2)反射点(-,-).提示:

用入射角等于反射角原理.

7.点A既在BC边上的高所在的直线上,又在∠A的平分线所在直线上,由

得A(-1,0)

∴kAB=1

又∠A的平分线所在直线方程为y=0

∴kAC=-1

∴AC边所在的直线方程为y=-(x+1)①

又kBC=-2,

∴BC边所在的直线方程为y-2=-2(x-1)②

①②联列得C的坐标为(5,-6)

8.设所求轨迹上的任意一点H(x,y),圆上的切点Q(x0,y0)

∵QH⊥l,AH⊥MQ,∴AH∥OQ,AQ∥QH.又|OA|=|OQ|,∴四边形AOQH为菱形.

∴x0=x,y0=y

2.

∵点Q(x0,y0)在圆上,x02+y02=4

∴H点的轨迹方程是:

x2+(y-2)2=4(x≠0).

B组

1.B.提示:

直接将动点坐标代如等式,求得点的轨迹是一个以(2,0)为圆心,2为半径的圆.

2.D.提示:

设圆心(x,y),则

3.C.提示:

考虑斜率不相等的情况.

4..提示:

弦的垂直平分线过圆心.

5.B,D.提示:

圆心到直线的距离=|sin(θ+)|

1.

6.作MC⊥AB交PQ于M,则MC是两圆的公切线.|MC|=|MQ|=|MP|,M为PQ的中点.设M(x,y),则点C,O1,O2的坐标分别为(x,0),(,0),(,0)

xxO,O,由平面几何知识知∠O1MO2=90°.

∴|O|2+|O|2=|O1O2|2,代入坐标化简得:

x2+4y2=9(-3<x<3)

7.∵BT,CK分别是∠B和∠C的平分线,∴点A关于BT,CK的对称点A′,A″必在BC所在直线上,所以BC的方程是x+2y-3

0.

8.线段OP的中点坐标为((b3-b),(c3-c)),以OP为直径的圆的方程是[x-(b3-b)]2+[y-(c3-c)]2=[(b3-b)]2+[(c3-c)]2……①

将x2+y2=(+1)2代入①得:

(b3-b)x+(c3-c)y=(+1)2

这就是过两切点的切线方程.

因b3-b=b(b+1)(b-1),它为三个连续整数的乘积,显然能被整除.

同理,c3-c也能被3整除.

于是(+1)2要能被3整除,+1要能被3整除,因a是整数,故这是不可能的.

从而原命题得证.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 管理学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1