人教版初二数学三角形知识点归纳.docx

上传人:b****7 文档编号:26687643 上传时间:2023-06-21 格式:DOCX 页数:13 大小:67.76KB
下载 相关 举报
人教版初二数学三角形知识点归纳.docx_第1页
第1页 / 共13页
人教版初二数学三角形知识点归纳.docx_第2页
第2页 / 共13页
人教版初二数学三角形知识点归纳.docx_第3页
第3页 / 共13页
人教版初二数学三角形知识点归纳.docx_第4页
第4页 / 共13页
人教版初二数学三角形知识点归纳.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

人教版初二数学三角形知识点归纳.docx

《人教版初二数学三角形知识点归纳.docx》由会员分享,可在线阅读,更多相关《人教版初二数学三角形知识点归纳.docx(13页珍藏版)》请在冰豆网上搜索。

人教版初二数学三角形知识点归纳.docx

人教版初二数学三角形知识点归纳

三角形

几何A级概念:

(要求深刻理解、熟练运用、主要用于几何证明)

1.三角形的角平分线定义:

三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.(如图)

几何表达式举例:

(1)∵AD平分∠BAC

∴∠BAD=∠CAD

(2)∵∠BAD=∠CAD

∴AD是角平分线

2.三角形的中线定义:

在三角形中,连结一个顶点和它的对边的中点的线段叫做三角形的中线.(如图)

几何表达式举例:

(1)∵AD是三角形的中线

∴BD=CD

(2)∵BD=CD

∴AD是三角形的中线

3.三角形的高线定义:

从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线.

(如图)

几何表达式举例:

(1)∵AD是ΔABC的高

∴∠ADB=90°

(2)∵∠ADB=90°

∴AD是ΔABC的高

※4.三角形的三边关系定理:

三角形的两边之和大于第三边,三角形的两边之差小于第三边.(如图)

 

几何表达式举例:

(1)∵AB+BC>AC

∴……………

(2)∵AB-BC<AC

∴……………

5.等腰三角形的定义:

有两条边相等的三角形叫做等腰三角形.(如图)

 

几何表达式举例:

(1)∵ΔABC是等腰三角形

∴AB=AC

(2)∵AB=AC

∴ΔABC是等腰三角形

6.等边三角形的定义:

有三条边相等的三角形叫做等边三角形.(如图)

几何表达式举例:

(1)∵ΔABC是等边三角形

∴AB=BC=AC

(2)∵AB=BC=AC

∴ΔABC是等边三角形

7.三角形的内角和定理及推论:

(1)三角形的内角和180°;(如图)

(2)直角三角形的两个锐角互余;(如图)

(3)三角形的一个外角等于和它不相邻的两个内角的和;(如图)

※(4)三角形的一个外角大于任何一个和它不相邻的内角.

(1)

(2)(3)(4)

几何表达式举例:

(1)∵∠A+∠B+∠C=180°

∴…………………

(2)∵∠C=90°

∴∠A+∠B=90°

(3)∵∠ACD=∠A+∠B

∴…………………

(4)∵∠ACD>∠A

∴…………………

8.直角三角形的定义:

有一个角是直角的三角形叫直角三角形.(如图)

几何表达式举例:

(1)∵∠C=90°

∴ΔABC是直角三角形

(2)∵ΔABC是直角三角形

∴∠C=90°

9.等腰直角三角形的定义:

两条直角边相等的直角三角形叫等腰直角三角形.(如图)

 

几何表达式举例:

(1)∵∠C=90°CA=CB

∴ΔABC是等腰直角三角形

(2)∵ΔABC是等腰直角三角形

∴∠C=90°CA=CB

10.全等三角形的性质:

(1)全等三角形的对应边相等;(如图)

(2)全等三角形的对应角相等.(如图)

几何表达式举例:

(1)∵ΔABC≌ΔEFG

∴AB=EF………

(2)∵ΔABC≌ΔEFG

∴∠A=∠E………

11.全等三角形的判定:

“SAS”“ASA”“AAS”“SSS”“HL”.(如图)

(1)

(2)

 

(3)

几何表达式举例:

(1)∵AB=EF

∵∠B=∠F

又∵BC=FG

∴ΔABC≌ΔEFG

(2)………………

(3)在RtΔABC和RtΔEFG中

∵AB=EF

又∵AC=EG

∴RtΔABC≌RtΔEFG

12.角平分线的性质定理及逆定理:

(1)在角平分线上的点到角的两边距离相等;(如图)

(2)到角的两边距离相等的点在角平分线上.(如图)

 

 

几何表达式举例:

(1)∵OC平分∠AOB

又∵CD⊥OACE⊥OB

∴CD=CE

(2)∵CD⊥OACE⊥OB

又∵CD=CE

∴OC是角平分线

13.线段垂直平分线的定义:

垂直于一条线段且平分这条线段的直线,叫做这条线段的垂直平分线.(如图)

几何表达式举例:

(1)∵EF垂直平分AB

∴EF⊥ABOA=OB

(2)∵EF⊥ABOA=OB

∴EF是AB的垂直平分线

14.线段垂直平分线的性质定理及逆定理:

(1)线段垂直平分线上的点和这条线段的两个端点的距离相等;(如图)

(2)和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.(如图)

几何表达式举例:

(1)∵MN是线段AB的垂直平分线

∴PA=PB

(2)∵PA=PB

∴点P在线段AB的垂直平分线上

15.等腰三角形的性质定理及推论:

(1)等腰三角形的两个底角相等;(即等边对等角)(如图)

(2)等腰三角形的“顶角平分线、底边中线、底边上的高”三线合一;(如图)

(3)等边三角形的各角都相等,并且都是60°.(如图)

(1)

(2)

(3)

几何表达式举例:

(1)∵AB=AC

∴∠B=∠C

(2)∵AB=AC

又∵∠BAD=∠CAD

∴BD=CD

AD⊥BC

………………

(3)∵ΔABC是等边三角形

∴∠A=∠B=∠C=60°

16.等腰三角形的判定定理及推论:

(1)如果一个三角形有两个角都相等,那么这两个角所对边也相等;(即等角对等边)(如图)

(2)三个角都相等的三角形是等边三角形;(如图)

(3)有一个角等于60°的等腰三角形是等边三角形;(如图)

(4)在直角三角形中,如果有一个角等于30°,那么它所对的直角边是斜边的一半.(如图)

(1)

(2)(3)

(4)

几何表达式举例:

(1)∵∠B=∠C

∴AB=AC

(2)∵∠A=∠B=∠C

∴ΔABC是等边三角形

(3)∵∠A=60°

又∵AB=AC

∴ΔABC是等边三角形

(4)∵∠C=90°∠B=30°

∴AC=

AB

17.关于轴对称的定理

(1)关于某条直线对称的两个图形是全等形;(如图)

(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线.(如图)

几何表达式举例:

(1)∵ΔABC、ΔEGF关于MN轴对称

∴ΔABC≌ΔEGF

(2)∵ΔABC、ΔEGF关于MN轴对称

∴OA=OEMN⊥AE

18.勾股定理及逆定理:

(1)直角三角形的两直角边a、b的平方和等于斜边c的平方,即a2+b2=c2;(如图)

(2)如果三角形的三边长有下面关系:

a2+b2=c2,那么这个三角形是直角三角形.(如图)

 

几何表达式举例:

(1)∵ΔABC是直角三角形

∴a2+b2=c2

(2)∵a2+b2=c2

∴ΔABC是直角三角形

19.RtΔ斜边中线定理及逆定理:

(1)直角三角形中,斜边上的中线是斜边的一半;(如图)

(2)如果三角形一边上的中线是这边的一半,那么这个三角形是直角三角形.(如图)

 

几何表达式举例:

∵ΔABC是直角三角形

∵D是AB的中点

∴CD=

AB

(2)∵CD=AD=BD

∴ΔABC是直角三角形

几何B级概念:

(要求理解、会讲、会用,主要用于填空和选择题)

一基本概念:

三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数.

二常识:

1.三角形中,第三边长的判断:

另两边之差<第三边<另两边之和.

2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,而第三个交点可在三角形内,三角形上,三角形外.注意:

三角形的角平分线、中线、高线都是线段.

3.如图,三角形中,有一个重要的面积等式,即:

若CD⊥AB,BE⊥CA,则CD·AB=BE·CA.

4.三角形能否成立的条件是:

最长边<另两边之和.

5.直角三角形能否成立的条件是:

最长边的平方等于另两边的平方和.

6.分别含30°、45°、60°的直角三角形是特殊的直角三角形.

7.如图,双垂图形中,有两个重要的性质,即:

(1)AC·CB=CD·AB;

(2)∠1=∠B,∠2=∠A.

8.三角形中,最多有一个内角是钝角,但最少有两个外角是钝角.

9.全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边.

10.等边三角形是特殊的等腰三角形.

11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明.

12.符合“AAA”“SSA”条件的三角形不能判定全等.

13.几何习题经常用四种方法进行分析:

(1)分析综合法;

(2)方程分析法;(3)代入分析法;(4)图形观察法.

14.几何基本作图分为:

(1)作线段等于已知线段;

(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线.

15.会用尺规完成“SAS”、“ASA”、“AAS”、“SSS”、“HL”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图.

16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:

每步作图都应该是几何基本作图.

17.几何画图的类型:

(1)估画图;

(2)工具画图;(3)尺规画图.

※18.几何重要图形和辅助线:

(1)选取和作辅助线的原则:

①构造特殊图形,使可用的定理增加;

②一举多得;

③聚合题目中的分散条件,转移线段,转移角;

④作辅助线必须符合几何基本作图.

(2)已知角平分线.(若BD是角平分线)

①在BA上截取BE=BC构造全等,转移线段和角;

②过D点作DE∥BC交AB于E,构造等腰三角形.

(3)已知三角形中线(若AD是BC的中线)

①过D点作DE∥AC交AB于E,构造中位线;

②延长AD到E,使DE=AD

连结CE构造全等,转移线段和角;

③∵AD是中线

∴SΔABD=SΔADC

(等底等高的三角形等面积)

(4)已知等腰三角形ABC中,AB=AC

①作等腰三角形ABC底边的中线AD

(顶角的平分线或底边的高)构造全

等三角形;

 

②作等腰三角形ABC一边的平行线DE,构造

新的等腰三角形.

(5)其它

作等边三角形ABC

一边的平行线DE,构造新的等边三角形;

②作CE∥AB,转移角;

③延长BD与AC交于E,不规则图形转化为规则图形;

④多边形转化为三角形;

⑤延长BC到D,使CD=BC,连结AD,直角三角形转化为等腰三角形;

⑥若a∥b,AC,BC是角平

分线,则∠C=90°.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 研究生入学考试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1