小型液压机液压设计概要.docx

上传人:b****7 文档编号:26675989 上传时间:2023-06-21 格式:DOCX 页数:13 大小:100.67KB
下载 相关 举报
小型液压机液压设计概要.docx_第1页
第1页 / 共13页
小型液压机液压设计概要.docx_第2页
第2页 / 共13页
小型液压机液压设计概要.docx_第3页
第3页 / 共13页
小型液压机液压设计概要.docx_第4页
第4页 / 共13页
小型液压机液压设计概要.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

小型液压机液压设计概要.docx

《小型液压机液压设计概要.docx》由会员分享,可在线阅读,更多相关《小型液压机液压设计概要.docx(13页珍藏版)》请在冰豆网上搜索。

小型液压机液压设计概要.docx

小型液压机液压设计概要

题目:

姓名:

学号:

院系:

专业:

指导老师:

时间:

 

前言

液压传动是以流体作为工作介质对能量进行传动和控制的一种传动形式。

利用有压的液体经由一些机件控制之后来传递运动和动力。

相对于电力拖动和机械传动而言,液压传动具有输出力大,重量轻,惯性小,调速方便以及易于控制等优点,因而广泛应用于工程机械,建筑机械和机床等设备上。

作为现代机械设备实现传动与控制的重要技术手段,液压技术在国民经济各领域得到了广泛的应用。

与其他传动控制技术相比,液压技术具有能量密度高﹑配置灵活方便﹑调速范围大﹑工作平稳且快速性好﹑易于控制并过载保护﹑易于实现自动化和机电液一体化整合﹑系统设计制造和使用维护方便等多种显著的技术优势,因而使其成为现代机械工程的基本技术构成和现代控制工程的基本技术要素。

液压压力机是压缩成型和压注成型的主要设备,适用于可塑性材料的压制工艺。

如冲压、弯曲、翻边、薄板拉伸等。

也可以从事校正、压装、砂轮成型、冷挤金属零件成型、塑料制品及粉末制品的压制成型。

本文根据小型压力机的用途﹑特点和要求,利用液压传动的基本原理,拟定出合理的液压系统图,再经过必要的计算来确定液压系统的参数,然后按照这些参数来选用液压元件的规格和进行系统的结构设计。

小型压力机的液压系统呈长方形布置,外形新颖美观,动力系统采用液压系统,结构简单、紧凑、动作灵敏可靠。

该机并设有脚踏开关,可实现半自动工艺动作的循环。

一设计题目

小型液压机液压系统设计

二技术参数和设计要求;

液压机的工作循环分别由快速空程下行、减速下行、压制、保压、快速回程、停止的工作循环,快速往返速度为3.5m/min,加压速度为50~250mm/min,压制力为200000N,运动部件总重量为20000N,行程300mm。

三工况分析

首先根据已知条件绘制运动部件的速度循环图。

图3-1

计算各阶段的外负载并绘制负载图

1、工件的压制力即为工件的负载力:

Ft=20000N

2、摩擦负载

静摩擦系数取0.2,动摩擦系数取0.1则

静摩擦阻力Ffs=0.2*20000=4000N

动摩擦阻力Ffd=0.1*20000=2000N

3、惯性负载Fm=m(△v/△t)

△t为加速或减速的时间一般△t=0.01~0.5s,在这里取△t=0.2s

Fm=(20000*3)/(9.8*0.2*60)=510N

自重G=20000N

液压缸在各工作阶段的外负载

工作循环

外负载F(N)

启动

F=G+Ffs

24000N

加速

F=G+Fm+Ffd

22510N

快进

F=G+Ffd

22000N

共进

F=G+Ft+Ffd

222000N

快退

F=G-Ffd

18000N

 

负载循环图如下

图3-2

四拟定液压系统原理

1.确定供油方式

考虑到该机床压力要经常变换和调节,并能产生较大的压制力,流量大,功率大,空行程和加压行程的速度差异大,因此采用一高压泵供油

2.调速方式的选择

工作缸采用活塞式双作用缸,当压力油进入工作缸上腔,活塞带动横梁向下运动,其速度慢,压力大,当压力油进入工作缸下腔,活塞向上运动,其速度较快,压力较小,符合一般的慢速压制、快速回程的工艺要求。

 

液压系统原理图

3.液压系统的计算和选择液压元件

(1)液压缸主要尺寸的确定

1)工作压力P的确定。

工作压力P可根据负载大小及机器的类型,来初步确定由手册查表取液压缸工作压力为25MPa。

2)计算液压缸内径D和活塞杆直径d。

由负载图知最大负载F为307500N,按表2-2取p2可不计,考虑到快进,快退速度相等,取d/D=0.7

D={4Fw/[πp1ηcm]}1/2=0.13(m)

根据手册查表取液压缸内径直径D=140(mm)活塞杆直径系列取d=100(mm)

取液压缸的D和d分别为140mm和100mm。

按最低工进速度验算液压缸的最小稳定速度

A≥Qmin/Vmin=0.05x1000/3=16.7(cm2)

液压缸节流腔有效工作面积选取液压缸有杆腔的实际面积,即

A2=π(D2-d2)/4=3.14×(1402-1002)/4=75.36cm2

满足不等式,所以液压缸能达到所需低速

(2)计算在各工作阶段液压缸所需的流量

Q(快进)=πd2v(快进)/4=3.14x0.1x0.1x3/4=23.55L/min

Q(工进)=πD2v(工进)/4=3.14x0.14x0.14x0.4/4=6.15L/min

Q(快退)=π(D2-d2)(快退)v/4=22.61L/min

(3)确定液压泵的流量,压力和选择泵的规格

1.泵的工作压力的确定

考虑到正常工作中进油管有一定的压力损失,所以泵的工作压力为

式中,Pp-液压泵最大工作压力;

P1-执行元件最大工作压力;

-进油管路中的压力损失,

简单系统可取0.2~~0.5Mpa。

故可取压力损失∑△P1=0.5Mpa

25+0.5=25.5MP

上述计算所得的Pp是系统的静态压力,考虑到系统在各种工况的过度阶段出现的动态压力往往超出静态压力,另外考虑到一定的压力储备量,并确保泵的寿命,因此选泵的压力值Pa应为Pa

1.25Pb-1.6Pb

因此Pa=1.25Pp=1.25

25.5=31.875MPa

2.泵的流量确定,液压泵的最大流量应为

Q

KL(∑Q)max

油液的泄露系数KL=1.2

故Qp=KL(∑Q)max=1.2

23.55=28.26L/min

3.选择液压泵的规格

根据以上计算的Pa和Qp查阅相关手册现选用IGP5-032型的内啮合齿轮泵,

nmax=3000r/min

nmin=400r/min

额定压力p0=31.5Mpa,每转排量q=33.1L/r,容积效率

=85%,总效率

=0.7.

4.与液压泵匹配的电动机选定

首先分别算出快进与工进两种不同工况时的功率,取两者较大值作为选择电动机规格的依据。

由于在慢进时泵输出的流量减小,泵的效率急剧降低,一般在流量在0.2-1L/min范围内时,可取

=0.03-0.14.同时还应该注意到,为了使所选择的电动机在经过泵的流量特性曲线最大功率时不至停转,需进行演算,即Pa×Qp/

式中,Pd-所选电动机额定功率;Pb-内啮合齿轮泵的限定压力;Qp-压力为Pb时,泵的输出流量。

首先计算快进时的功率,快进时的外负载为7500N,进油时的压力损失定为0.3MPa。

Pb=[7500/(0.1x0.1π/4)x10-6+0.3]=1.26MPa

快进时所需电机功率为:

1.26x28.26/60x0.7=0.85kw

工进时所需电机功率为:

P=Ppx6.15/(60x0.7)=0.18kw

查阅电动机产品样本,选用Y90S-4型电动机,其额定功率为1.1KW,额定转速为1400r/min

4.液压阀的选择

根据所拟定的液压系统图,按通过各元件的最大流量来选择液压元件的规格。

选定的液压元件如表所示

序号

元件名称

最大流量(L/min

最大工作压力(Mpa)

型号选择

1

滤油器

72.4

XU-D32X100

2

液压泵

49.6

34.5

IGP5-32

3

三位四通电磁阀

60.3

25

34YF30-E20B

4

单向调速阀

30

40

ADTL-10

5

二位三通电磁阀

60.3

23YF3B-E20B

6

单向阀

18-1500

31.5

SA10

7

压力表开关

35

KF-28

5.确定管道尺寸

油管内径尺寸一般可参照选用的液压元件接口尺寸而定,也可接管路允许流速进行计算,本系统主要路流量为差动时流量Q=47.1L/min压油管的允许流速取V=3m/s则内径d为d=4.6(47.1/3)1/2=18.2mm

若系统主油路流量按快退时取Q=22.61L/min,则可算得油管内径d=17.9mm.综合d=20mm

吸油管同样可按上式计算(Q=49.6L/min,V=2m/s)现参照YBX-16变量泵吸油口连接尺寸,取吸油管内径d为29mm

6.液压油箱容积的确定

根据液压油箱有效容量按泵的流量的5—7倍来确定则选用容量为400L。

7.液压缸的壁厚和外径的计算

液压缸的壁厚由液压缸的强度条件来计算

液压缸的壁厚一般是指缸筒结构中最薄处的厚度,从材料力学可知,承受内压力的圆筒,其内应力分布规律因壁厚的不同而各异,一般计算时可分为薄壁圆筒,起重运输机械和工程机械的液压缸一般用无缝钢管材料,大多属于薄壁圆筒结构,其壁厚按薄壁圆筒公式计算

ζ≥PD/2[σ]=38.25×140/2×100=26.78mm([σ]=100~110MP)

故取ζ=30mm

液压缸壁厚算出后,即可求出缸体的外径D1为

D1≥D+2ζ=140+2×30=200mm

8.液压缸工作行程的确定

液压缸工作行程长度,可根据执行机构实际工作烦人最大行程来确定,查表的系列尺寸选取标准值L=300mm。

五液压系统的验算

已知该液压系统中进回油管的内径均为12mm,各段管道的长度分别为:

AB=0.3mAC=1.7mAD=1.7mDE=2m。

选用L-HL32液压油,考虑到油的最低温度为15℃查得15℃时该液压油曲运动粘度V=150cst=1.5cm/s,油的密度ρ=920kg/m

1压力损失的验算

1.工作进给时进油路压力损失,运动部件工作进给时的最大速度为0.25m/min,进给时的最大流量为23.55L/min,则液压油在管内流速V为:

V1=Q/(πdd/4)=(23.55×1000)/(3.14×2.9×2./4)=59.45(cm/s)

管道流动雷诺数Rel为

Rel=59.45×3.2/1.5=126.8

Rel<2300可见油液在管道内流态为层流,其沿程阻力系数λl=75Rel=0.59

进油管道的沿程压力损失ΔP为:

ΔP1-1=λl/(l/d)·(ρV/2﹚

=0.59×﹙1.7+0.3﹚/(0.029×920×0.592/2)=0.2MPa

查得换向阀34YF30-E20B的压力损失ΔP=0.05MPa

忽略油液通过管接头、油路板等处的局部压力损失,则进油路总压力损失ΔP为:

ΔP1=ΔP1-1+ΔP1-2=(0.2×1000000+0.05×1000000)=0.25MPa

2.工作进给时间回油路的压力损失,由于选用单活塞杆液压缸且液压缸有杆腔的工作面积为无杆腔的工作面积的二分之一,则回油管道的流量为进油管的二分之一,则:

V2=V/2=29.7(cm/s)

Rel=V2d/r=29.7×2/1.5=57.5

λ2=75/Rel=75/57.5=1.3

回油管道的沿程压力损失ΔP为:

ΔP2-1=λ/(l/d)×(P×VXV/2)=1.3×2/0.029×920×0.5952/2=0.56MPa

查产品样本知换向阀23YF3B-E20B的压力损失ΔP=0.025MPa。

换向阀34YF30-E20B的压力损失ΔP=0.025MPa,调速阀ADTL-10的压力损失ΔP=0.5MPa

回油路总压力损失ΔP为

ΔP2=ΔP2-1+ΔP2-2+ΔP2-3+Δ2-4=0.55+0.025+0.025+0.5=1.1MPa

3.变量泵出口处的压力P:

Pp=(F/ηcm+A2ΔP2)/(A1+ΔP1)

=[(307500/0.9+0.00785×1.1×100)/0.01539]+0.15

=22.4MPa

4.快进时的压力损失,快进时液压缸为差动连接,自会流点A至液压缸进油口C之间的管路AC中,流量为液压泵出口流量的两倍即26L/min,AC段管路的沿程压力损失为ΔP1-1为

V1=Q/(πdXd/4)=45.22×1000/(3.14×2X2/4×60)=240.02(cm/s)

Rel=vld/r=320.03

λ1=75/rel=0.234

ΔP1-1=λ(l/d)×(ρV2)

=0.234.×(1.7/0.02)×(920×2.4X2.4X2)

=0.2MPa

同样可求管道AB段及AD段的沿程压力损失ΔP1-2ΔP1-3为

V2=Q/(πdxd/4)=295cm/sRe2=V/d/r=236

V2=75Re2=0.38

ΔP1-2=0.024MPa

ΔP1-3=0.15MPa

查产品样本知,流经各阀的局部压力损失为:

34YF30-E20B的压力损失,ΔP2-1=0.17MPa

23YF3B-E20B的压力损失,ΔP2-1=0.17MPa

据分析在差动连接中,泵的出口压力为P

P=2ΔP1-2+ΔP1-2+ΔP2-2+ΔP2-1+ΔP2-2+F/A2ηcm

=2×0.2+0.024+0.15+017+0.17+25/0.00785×0.9

=0.18MPa

快退时压力损失验算亦是如此,上述验算表明,无需修改远设计。

2系统温升的验算

在整个工作循环中,工进阶段所占的时间最长,为了简化计算,主要考虑工进时的发热量,一般情况下,工进速度大时发热量较大,由于限压式变量泵在流量不同时,效率相差极大,所以分别计算最大、最小时的发热量,然后加以比较,取数值大者进行分析

当V=4cm/min时

流量Q=V(πDD/4)=π×0.14×0.14/4=0.616﹙L/min)

此时泵的效率为0.1,泵的出口压力为22.4MPa

则有:

P输入=22.4×0.616/(60×0.1)=2.464(KW)

P输出=FV=307500x4/60×0.01×0.001=0.21(Kw)

此时的功率损失为

ΔP=P输入-P输出=2.464-0.21=2.23(Kw)

当V=25cm/min时,Q=3.85L/min总效率η=0.8

则P输入=25×3.85/(60×0.8)=1.845(Kw)

P输出=FV=307500×25/60×0.01×0.001=1.28(Kw)

ΔP=P输入-P输出=0.565(Kw)

可见在工进速度低时,功率损失为2.156Kw,发热最大

假定系统的散热状况一般,取K=10×0.001Kw/(cm·℃)

油箱的散热面积A为A=0.065V2/3=6.5m2

系统的温升为:

ΔT=ΔP/KA=2.156/(10×0.001×6.6)℃=33.2℃

验算表明系统的温升在许可范围内

 

总结

经过一周的努力,我们终于完成了这次液压课程设计任务,期间我们有很多不懂的地方,通过网上查找资料,借阅图书馆书籍和虚心地向同学请教,我们终于克服了这些困难,完成了小型液压机液压系统设计,这次课设于我们来说收获丰富,它不紧使我们对液压这门课的知识有了更深层次的认识,也对我的将来有重大的影响,教会了我如何克服困难,我坚信这次课设对我以后的工作道路影响巨大。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 动态背景

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1