基于脑电波的便携式睡眠质量监测系统.docx
《基于脑电波的便携式睡眠质量监测系统.docx》由会员分享,可在线阅读,更多相关《基于脑电波的便携式睡眠质量监测系统.docx(17页珍藏版)》请在冰豆网上搜索。
基于脑电波的便携式睡眠质量监测系统
基于脑电波的
便携式睡眠质量监测系统
金旭扬
导师:
华东理工大学信息学院万永菁
中学信息学科组吴奕明
摘要
睡眠是人体重要的生理活动,睡眠质量近年来受到高度关注;本文从脑电波角度探寻睡眠监测的有效易行方法,从软硬件角度设计了便携式睡眠质量监测系统。
研究分析便携式脑电采集设备采集的数据和CAP睡眠脑电数据库,用功率谱分析和BP神经网络探究了睡眠分期的有效算法。
实验进行了初步的睡眠分期与质量评估,证明了便携式睡眠质量监测系统的准确性及利用脑电数据进行睡眠分期的有效性。
本课题研究,提出了利用单导连脑电信号进行睡眠分期的可行性,为之后研究便携式、市场化的睡眠监测设备以及其他应用提供了重要的实验参考依据。
关键词:
脑电;脑机接口;睡眠监测;睡眠分期;BP神经网络
一、引言
1.1睡眠质量研究背景及意义
睡眠是一种重要的生理现象。
从生到死,人类始终是在觉醒和睡眠中度过。
人类通过高质量的睡眠,可以消除疲劳,更好地恢复精神和体力,使人在睡眠之后保持良好的觉醒状态,提高工作、学习效率。
人类用于睡眠的时间占人一生中的三分之一。
然而迄今我们对这一重要的生理现象的认识还微乎其微,对睡眠进行科学的研究只有短短的几十年历史。
1937年,Lomis、Harvey和Hobart注意到,睡眠不是处于一种稳定状态,而是要发生一系列非常有规律的周期性变化。
[1]
1986年,Rechtschaffen等人重新肯定了Dement和Kleitman的分期标准,并根据十年来的经验作了一些必要的修改和补充,使之更趋完善。
[2]
2007年,美国睡眠医学会基于上述标准进行改进,发布了新的睡眠分期专业标准,其中规定了各个指标具体的采集标准及判定方法。
[3]
1.2脑电信号分析方法综述
随着电子技术的发展,数字处理技术逐步应用到EEG的分析中来。
经典的EEG分析方法有:
以分析EEG波形的几何性质,如幅度、均值、峭度等为主的时域分析方法和以分析EEG各频率功率、相干等为主的领域方法。
早在70年代初,W.C.Yeo和J.P.Smith[4]就应用Walsh谱分析离线地研究了一个处于睡眠状态的男性的三段脑电图。
R.D.Larsen等[5]应用Walsh顺序的Walsh函数对EEG进行展开,并定义了双值自相关函数,尔后讨论了可以按双值自相关函数来显示各种睡眠EEG的特征。
1982年,美国物理学家Hopfield提出了HNN模型,从而有力地推动了应用神经网络方法解释许多复杂生命过程的进展。
自八十年代末以来,人工神经网络的应用已涉及到了脑电分析的各个方面,其中包括自发脑电的睡眠分级及睡眠EEG分析。
S.Roberts和L.Tarassenko[6,7]把人工神经网络应用于睡眠EEG的自动分析。
他们采用无监督学习网络对大量没有经过人工判别的数据进行自组织分类,少量的经过人工判别的标准样本则用来自组织分类结果做解释和量化,从而在网络中形成了8个聚类区。
根据EEG在8个聚类区之间随时间运动的轨迹可以对一夜的睡眠状况有定性的了解。
[8]
1.3脑电监测设备介绍
目前,脑电监测设备大致有二:
一为大型的、医院专用的多导睡眠监测系统。
这种系统需要测量多导连的脑电图、眼电图、肌电图、口鼻气流、呼吸运动、血氧饱和度等众多指标,且有严格的判定规则、需要专业知识。
[3]
二为便携式脑机接口设备。
此类设备通常体积小、使用方便、成本也较低,测量的脑电图多为单导连,但由于获取的数据用途较为单一,可以很好地完成睡眠监测的任务。
[9]
1.4课题研究目标
本课题利用便携式脑电波采集设备实时获取脑电数据,并且与终端设备通讯实时存储、分析数据。
利用Windows、Android等移动平台下编写的软件实现此功能,实现人体的睡眠监控。
二、方法和假设
2.1系统软硬件平台的基本架构
2.1.1睡眠质量监测系统的硬件组成
用于采集数据的设备是宏智力公司出品的Brainlink意念力头箍,它采用基于Neurosky芯片平台的Thinkgear芯片,主要用于检测脑电信号。
实验采用手机(Android)系统和电脑(Windows)系统作为采集终端。
图2-1睡眠质量监测系统框图
图2-2宏智力公司出品的Brainlink意念力头箍
2.1.2睡眠质量监测系统的数据采集方式
NeuroSky的脑电波采集设备较为轻便,只有前额、左耳垂两个电极(一导连)。
设备采用AAA电池供电,根据介绍续航能力有8小时(若再并联一颗电池可以更长),没有传统脑电采集中与脑电频段接近的50Hz工频交流干扰信号。
设备采用无线蓝牙连接,更有利于睡眠时数据的传输;耳垂采用导电夹,容易固定;利用心电图电极片改装前额电极,也可以弥补原本接触不良的缺点。
为了完成单向传输数据的目的,使用的蓝牙模拟串口(发送)芯片能耗低、续航能力强、编程较为简易。
接收端可以是任何蓝牙4.0设备,只需一次配对后就可自动连接,对于手机、电脑硬件的要求不高。
初步测试时,采集使用的是MicrosoftWindows平台,使用Neurosky提供的API接口,在VisualC++上编写简单的程序即可完成数据的存盘。
采样频率约为513.5Hz,远高于脑电信号的最高有效频率30Hz的两倍,符合采样定理。
图2-3Windows7下的采集、分析软件
利用Neurosky提供的AndroidAPI接口,在Android平台下的脑电波预览、采集工作也得以完成,程序可以在后台运行,并且将采样数据即使存盘,在实际使用过程中更为方便,也省去了用电脑建立连接、定义接口的繁杂步骤,适合移动平台。
图2-4Android下的采集、预览软件
2.2基于脑电信号的睡眠质量监测方法
2.2.1脑电信号预处理方法
脑电波在时域上属于非平稳随机信号,实验中采集的脑电波只有一导连,因此信号不稳定、噪波严重。
需要经过初步的低通数字滤波预处理。
为方便起见,频率衰减带上限取到高于脑电波分析中有效频率30Hz的50Hz。
数字滤波器包括有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器两大类。
FIR滤波器可以得到严格的线性相位,相比IIR需要采用较高的阶数(约是IIR的五至十倍),但软件实现方便。
[10]
假设FIR滤波器的单位冲击响应h(n)为一个长度为N的序列,那么滤波器的系统函数为:
(2-1)
上式的差分形式为:
(2-2)
由于理想滤波器在边界频率处不连续,故其时域信号hd(n)一定是无限时宽的,无法实现。
因此,需要把具有理想线性相位特性的滤波器曲线用窗函数截取:
(2-3)
这种设计思想称为窗函数设计法。
其中,常用的汉明窗(HammingWindow)函数如下:
(2-4)
幅值函数为:
(2-5)[11]
使用Matlab的fir1工具设计300点的FIR低通滤波器,采用汉明窗,以512Hz作为采样频率,50Hz作为率减带,得到的滤波器幅频响应曲线如下:
图2-5300点低通滤波器幅频响应曲线
(采用归一化角频率,2π即为实际采样频率的512Hz)
2.2.2脑电信号的频域分析
脑电波按频率从高到低划分依次为:
β波(14~30Hz),α波(8~14Hz),θ波(4~8Hz),δ波(0.5~4Hz)。
脑电波
频率围
精神状态
β波
14~30Hz
运动感觉节律,放松可集中注意力,有协调性,思考,对于自我和周围环境意识清楚机警,激动
α波
8~14Hz
放松但不困倦,安静,有意识
θ波
4~8Hz
直觉的,回忆的,幻想,想象,浅睡
δ波
0.5~4Hz
深度睡眠,非快动眼睡眠,无意识
表2-1脑电波的频段划分以及不同类型脑电波所反映出的脑部精神状态[12]
离散时间序列x(n)的傅立叶(FourierTransform)变换是:
(2-6)
如已知随机信号x(n)的自相关函数r(k),那么功率谱密度函数就定义为:
(2-7)
功率谱函数的另一定义是:
(2-8)
理论上,离散信号处理方法对有限带宽的信号能做准确分析,但有限带宽信号在时域上是无限长的,只取其中有限长的一段进行傅立叶变换,相当于在原信号上加了矩形窗运算。
加窗在频域上,对原功率谱起到了平滑的作用。
(2-9)[13]
其中,w(n)表示窗口函数。
常用的窗有三角窗、汉宁窗、汉明窗、布莱克曼窗等。
这些窗的旁瓣电平比矩形窗低,但分辨率也较矩形窗低。
[14]这里使用的是汉明窗,在2.2.1节已有详细介绍。
2.2.3睡眠分期判定的改进算法
根据美国睡眠医学会2007年的标准,睡眠分期的脑电标准如下:
睡眠阶段
划分规则(仅含脑电,且忽略例外情况)
W(觉醒期)
枕区α波含量大于50%
N1(非快速眼动期1)
α波减弱,低幅度、4~7Hz的波含量大于50%
N2(非快速眼动期2)
开始阶段:
出现与觉醒无关的K复合波或者纺锤波
持续阶段:
低幅度、4~7Hz的波(不含K复合波或纺锤波)
N3(非快速眼动期3)
0.5~2Hz的慢波含量大于20%
R(快速眼动期)
出现低幅度、4~7Hz的波(不含K复合波或纺锤波)
表2-2睡眠分期的脑电标准[3]
其中,非快速眼动期睡眠深度从深到浅,依次是:
N3、N2、N1。
人工神经网络(ArtificialNeuralNetwork)是由大量简单的处理单元广泛连接组成的复杂网络,用于
模拟人类大脑神经网络的结构和行为。
它反映了人脑功能的许多基本特性,但它并不是人脑全部的真实写照,而只是对其作某种简化、抽象和模拟[15]。
在各种学习算法中,多层网络的反向传播算法(简称BP算法)应用最为广泛。
BP算法最早是由Werbos在1974年提出来的,Rumelhart等人于1985年发展了该理论,提出了清晰而又严格的算法。
BP算法适用于前向网络,它采用有导师学习的训练形式,提供输入矢量集的同时提供输出矢量集,通过反向传播学习算法,调整网络的连接权值,以使网络输出在最小均方差意义下,尽量向期望输出接近,反向学习的进程由正向传播和反向传播组成。
在正向传播过程中,输入信息经隐含神经元逐层处理并传向输出层,如果输出层不能得到期望的输出,则转入反向传播过程,将实际输出与期望输出之间的误差沿原来的连接通路返回,通过修改各层神经元的连接权值,使误差减小,然后转入正向传播过程,反复循环,直至误差小于给定的值为止。
设有N个训练对组成的训练集,每一个训练对用输入矢量Xi=(xi1,xi2,…,xim)和输出矢量Di=(di1,di2,…,din),1≤i≤N。
在前向传播中,把Xi作为网络的输入,根据现有的W计算网络的输出Yi=(yi1,yi2,…,yin)。
比较实际输出Yi与期望输出Di之间的差异,计算每一个输出单元的平方误差(yij-dij)2,1≤j≤n。
把这些误差进行加总得到误差函数:
(2-10)
所要做的就是通过改变W来减小E,以使得所有的输入矢量都尽量与相应的输出矢量相匹配。
因此学习的过程就转化为定义在权值空间上的目标函数E的极小化问题。
在训练过程中总是以尽可能快的减小E的方式进行。
一般它依赖于在权值空间中是否沿梯度方向搜索,所以采用梯度下降法来训练权值。
每一个权值wij的变化量△wij按如下方式计算:
(2-11)
其中Z为学习率,是控制算法收敛速度的参数。
在第一阶段得到的总误差平方和又在第二阶段被一层一层地反向传播回去,从输出单元到输入单元。
权值的调整决定于传播过程中的每一步。
由于Ii、fi和E都是连续可微的,因此,可以应用以下公式计算△E/△wij的值:
(2-12)
W的修改可以有两种方式,一是对于每一训练对(Xi,Di)都修改一次W,另一种方式是输入全部的训练对后再加总△wij并进行修改。
训练矢量集中训练对的数目称为一个epoch。
当epoch不是非常大的时候,后一种方式能够加快收敛的速度。
因为第一种方式只能针对某一特定的训练对减小误差函数,而可能增大其它训练对的误差函数;第二种方式总是以减小总体误差函数为目标的。
所以采用第二种方式[16]。
图2-6BP神经网络结构图
三、数据记录与分析
3.1系统各部分效果验证
3.1.1滤波器效果验证
为了验证实时滤波的效果以及硬件性能,在清醒时采集的脑电波中截取了一段约4秒的信号进行验证。
经过检验,滤波器效果良好,经过实时滤波的数据已经符合脑电波分析的要求。
图3-1滤波前后的脑电信号波形对比(采样率512Hz)
图3-2滤波前后的脑电信号频谱对比(采样率512Hz)
3.1.2加窗频域分析效果验证
由于睡眠深时低频率的脑电波所占功率比例会增强,睡眠浅时会减弱,因此使用单一频段的波所占功率比例可以简单判读睡眠的深浅程度。
实验对象佩戴脑电采集设备一晚上约九小时的睡眠初步验证,每30秒数据、加汉明窗频域分析了δ波(0.5~4Hz)所占的功率比例,得到了如下的图像。
经过比对与参考,该图像已能大致反映睡眠的深浅程度,符合人体睡眠周期的客观规律。
加窗频域分析的效果,得以验证。
图3-3加窗频域分析后所得δ波所占的功率比例
3.2睡眠分期判定方法
3.2.1睡眠深浅的目测方法
实验对象佩戴脑电采集设备,未服用任何辅助药物或干预治疗,进行了连续五晚的睡眠脑电波采集。
受试者身体健康,入睡时间正常且有规律,睡眠周期较为完整。
由于睡眠监测实验的“第一晚效应”,即受试者在第一次佩戴设备时难以入睡、或是睡眠期间易惊醒、没有完整的睡眠周期的情况,因此只采用了第二晚至第五晚的数据进行分析。
采样频率固定为512Hz,每晚的睡眠连续时长均超过6小时。
多次取连续十分钟(600秒)片段,每30秒加汉明窗频域分析得到了各频段的脑电波所占的功率比例。
目测发现,有如下规律:
δ波和α波频率的峰或谷出现的位置大都重合,即一种波形的频率处于峰值时,另一种波形的频率处于谷值。
在经过数十次的非连续采集片段分析后,确认了本次实验中上述规律的普遍性。
图3-4δ波和α波频率比例的峰或谷出现的位置重合
3.2.2BP神经网络分析
由于条件的限制,难以用本次实验所用的便携式设备获取大量、准确的脑电波数据,也难以得到由医生给出的专业睡眠分期判断。
这部分研究采用从PhysioNet[17]获得的CAP睡眠脑电数据库[18]进行分析和算法验证。
该睡眠监测实验在意大利帕尔马的OspedaleMaggiore睡眠障碍研究中心进行。
此数据库有108例多导睡眠记录,每例至少记录了三导连的脑电信号(根据10-20国际通用系统,电极为:
F3或F4、C3或C4、O1或O2,以A1或A2作为参考电极)。
其中的16例由健康的成年受试者完成,这16名受试者无神经系统疾病,未使用会影响中枢神经的药物。
受试者为9名女性、7名男性,年龄从23岁至42岁不等。
此外,在睡眠中心接受过训练的神经病学家,还根据Rechtschaffen&Kales[2]规则对每一例记录进行了以30秒为一间隔的睡眠分期。
值得注意的是,R&K规则中把NREM睡眠分成了四个阶段,由浅至深依次为S1至S4。
在美国睡眠医学会基于上述标准的改进中,S3和S4被合并为N3。
本实验中,算法输入和输出的睡眠分期数据均已把二者合并。
为了验证神经网络的可行性与操作性,实验先提取第一位受试者(37岁、女性)的C4-A1导连脑电波片段进行分析。
根据数据附带的睡眠分期注释,对于睡眠的六个分期(这里以W、S1、S2、S3、S4、REM计),都各自随机选出三个片段,共18个。
每一片段时长一分钟,采样率512Hz,且片段彼此之间并不重合或者连续。
在Matlab中,利用前文所提方法,把一分钟的数据加汉明窗功率谱分析,取δ波所占的功率比例作为横轴,α波所占的功率比例作为纵轴,以不同颜色分别标出各个阶段画出了散点图。
从图中,可以发现代表六个睡眠阶段的点,彼此之间已经可以大致进行区分。
另外,由于在实际实验中会合并S3和S4,且会增加一个输入变量——θ波所占的功率比例,利用BP神经网络进行验证的方法的可行性得以证明。
图3-5第一位受试者的睡眠阶段散点图
实验提取第一、二、五、十、十一、十二位受试者(三位男性,年龄23岁、29岁、34岁;三位女性,年龄28岁、35岁、37岁)的脑电波片段进行分析,每位受试者、每个睡眠阶段,各选两个不连续片段,作为学习样本。
片段的采样率均为512Hz,均为C4-A1导连。
受试者身体良好,睡眠较为完整。
设计实验所需的BP网络时,输入层有三个节点,即δ波、θ波和α波所占的功率比例,以-1至1分别进行归一化处理。
输出层有五个节点,分别为(1,0,0,0,0)、(0,1,0,0,0)、(0,0,1,0,0)、(0,0,0,1,0)、(0,0,0,0,1),代表了分期的五个阶段:
N1、N2、N3、REM、W。
如前文,S1、S2分别对应N1、N2,S3、S4合并为N3。
隐含层节点根据经验一般应满足2n>m,其中n为隐含节点数[19]。
由于本文的样本数为60个,故n取6,即隐含层有6个节点。
隐含层采用对数S形转移函数(Logarithmicsigmoidtransferfunction):
(3-1)
输出层采用线性函数:
(3-2)
使用Matlab的newff工具,采用梯度下降自适应学习率训练函数创建BP神经网络。
学习率定为0.01,目标误差0.01,最大迭代次数500。
60个样本中,随机选取50个用于训练,另外未经过训练的10个用于验证。
经过验证,用于验证的样本中有4个判断错误,神经网络的效果并不十分理想。
但这四组判断错误的数据中,有一组把W误判为N1,有一组把N1误判为REM,误差并未影响对睡眠深浅度的判断。
此外,对于十组检验样本中的N3(深度睡眠)均为判断错误,可见BP神经网络还是有着一定的准确程度。
四、结论
本文主要探究了基于脑电波的便携式睡眠质量监测系统的可行性以及其硬件、软件系统的技术路线和实现方法,注重考虑了硬件系统的便携性与成本,在关注算法的有效性同时,探究其简易和可操作程度。
本文的实验证明,便携式脑电波采集设备具有传统设备无可比拟的移动性,适合个人、家庭用户使用;利用它可以获得较高质量的脑电信号、用于分析,结合神经网络等算法也可以对于睡眠质量进行可靠的监测与评估,还能够初步实现对于睡眠的分期。
但若要根据医学上严格的睡眠分期标准进行评估,需要采集多导连的脑电以及其他心电、呼吸等信号综合评估,且要求较高的职业技能与素养,只凭便携式睡眠监测系统难以满足要求。
本文的实验结果,将为人们更好地研究便携的睡眠监测系统提供有意义的实验依据与参考。
探究单导连脑电信号与人体睡眠的相关性,以及脑电波的现代高级分析算法,是对本文实验结果进行探讨的重要理论基础。
此外,探究脑电波的诱发、治疗理论,和便携式脑电波采集设备的准确性、可靠性及其市场化后的诊断、评估等应用价值,也可以作为本课题后续的发展方向。
参考文献
[1]蔡文英,钟龙云,作生.睡眠脑电波的计算机分析.中国科学技术大学学报.Vol.20,No.2,Jun.,1990.
[2]Rechtschaffen,A.andKales,A.AManualofStandardizedTerminology,Techniques,andScoringSystemforSleepStagesofHumanSubjects.UniversityofCalifornia,BrainInformationService/BrainResearchInstitute,LosAngeles,CA,1968.
[3]IberC,Ancoli-IsraelS,ChessonA,andQuanSFfortheAmericanAcademyofSleepMedicine.TheAASMManualfortheScoringofSleepandAssociatedEvents:
Rules,TerminologyandTechnicalSpecifications,1sted.:
Westchester,Illinois:
AmericanAcademyofSleepMedicine,2007.
[4]YeoW.C.,etal.NavalResCatholicUnivofAmer1972;293~297.
[5]LarsenR.D.,etal.MathBiosci1976;31:
237~253.
[6]RobertsS,etal.MedBiolEngput1992;30:
509~517.
[7]RobertsS,etal.IEEEprocedings-F1992;139(6):
420~425.
[8]杰,王明时.睡眠脑电的研究.国外医学生物医学工程分册,1997年第20卷第2期.
[9]SHAMBROOM,J.R.,FÁBREGAS,S.E.andJOHNSTONE,J.(2012),Validationofanautomatedwirelesssystemtomonitorsleepinhealthyadults.JournalofSleepResearch,21:
221–230.doi:
10.1111/j.1365-2869.2011.00944.x.
[10]铙志强,叶念渝.FIR和IIR数字滤波器的探讨与实现.计算机与数字工程,2005,33(7).
[11]史洁玉.MATLAB信号处理超级学习手册.人民邮电,2014.9.
[12]群.脑电生物反馈治疗仪与睡眠分期的研究.工业大学,2013.
[13]颖洁,邱意弘,朱贻盛.脑电信号分析方法及其应用.:
科学,2009.
[14]PetreStoica,RandolphL.Moses.SpectralAnalysisofSignals.PearsonPrenticeHall,2005.
[15]施鸿宝.神经网络及其应用.:
交通大学,1993.
[16]王春峰,万海晖,维.基于神经网络技术的商业银行信用风险评估.系统工程理论与实践,1999年9月第9期.
[17]MGTerzano,LParrino,ASherieri,RChervin,SChokroverty,CGuilleminault,MHirshkowitz,MMahowald,HMoldofsky,ARosa,RThomas,AWalters.Atlas,rules,andrecordingtechniquesforthescoringofcyclicalternatingpattern(CAP)inhumansleep.SleepMed2001Nov;2(6):
537-553.[18]GoldbergerAL,AmaralLAN,GlassL,HausdorffJM,IvanovPCh,MarkRG,MietusJE,MoodyGB,PengC-K,StanleyHE.PhysioBank,PhysioToolkit,andPhysioNet:
ponentsofaNewResearchResourcefo